Project Report Series QO93022

Irrigated land suitability assessment of Haughton Section - Stage I Nine Mile Lagoon to Oaky Creek Burdekin River irrigation area

K. J. Day Land Use and Fisheries

Department of Primary Industries Queensland

Queensland Government Technical Report

This report is a scanned copy and some detail may be illegible or lost. Before acting on any information, readers are strongly advised to ensure that numerals, percentages and details are correct.

This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry.

While all care has been taken in the preparation of this report neither the Queensland Government nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein.

© State of Queensland 1993

For information about this report contact <u>soils@qld.gov.au</u>

ISSN 0727-6281 Agdex 524

This publication was prepared for Department of Primary Industries, Queensland, officers to assist with the planned development of the Burdekin River Irrigation Area. It may be distributed to other individuals and organisations. The Water Resources Commission provided financial support for this study which is gratefully acknowledged.

© Queensland Government 1993

Department of Primary Industries GPO Box 46 Brisbane Q 4001

CONTENTS

		Page
LIST	Γ OF TABLES	v
LIST	T OF FIGURES	v
SUN	MMARY	vii
1.	INTRODUCTION	· 1
2.	PHYSIOGRAPHY 2.1 Climate 2.2 Topography 2.3 Surface drainage 2.4 Predevelopment flooding 2.5 Vegetation	4 4 4 6 7
3.	 SOILS 3.1 Soil survey methodology 3.2 Soil taxonomic and mapping units 3.3 Soil morphology and distribution 3.4 Chemical and physical characteristics 	20 20 20 23 25
4.	 LAND EVALUATION 4.1 Current land use 4.2 Method of assessing land suitability 4.3 Results of the land suitability assessment 4.4 Management considerations 4.5 Constraints to irrigation farm design 	42 42 42 43 45 48
5.	ACKNOWLEDGEMENTS	54
6.	REFERENCES	55

•

iv

APPENDICES

I	Vegetation of Haughton Section-Stage 1 - Common and scientific names.	57
II	Morphological and analytical data for representative soil profiles - Haughton Section - Stage 1, Burdekin River Irrigation Area.	58
III	Irrigated land suitability classes, Burdekin River Irrigation Area.	73
IV	Land suitability classification for furrow irrigation of sugar-cane, grain crops and small crops, Burdekin River Irrigation Area.	74
V	Land suitability classification for flood irrigation of rice, Burdekin River Irrigation Area.	82
VI	Land suitability classification for low volume irrigation of mangoes and avocadoes, Burdekin River Irrigation Area.	88
VII	Suitability of each UMA for sugar-cane, maize and rice, Haughton Section - Stage 1, Burdekin River Irrigation Area.	92
VIII	Suitability of each UMA for capsicums and mangoes, Haughton Section - Stage 1, Burdekin River Irrigation Area.	100

IST OF TADI DE

		LIST	LIST OF TAB		
Major	distinguishing	attributes	of the	soil tv	pes

soil types, Haughton
to Oaky Creek, Burdekir

The area and numbers of each mapping unit within Haughton Table 2. 22 Section - Stage 1, Burdekin River Irrigation Area.

Section - Stage 1, Nine Mile Lagoon

River Irrigation Area.

Table 1.

- Table 3. Soil types sampled within Haughton Section - Stage 1, Burdekin 26 River Irrigation Area.
- Table 4. Fertility characteristics for surface soils (0-0.1 m) sampled 28 within Haughton Section - Stage 1, Burdekin River Irrigation Area.
- Table 5. Mean clay content and cation exchange data for soils of 30 landscape unit 2 sampled within Haughton Section - Stage 1, Burdekin River Irrigation Area.
- Table 6. Mean clay content and cation exchange data for sodic duplex soils 31 of landscape unit 6 sampled within Haughton Section - Stage 1, Burdekin River Irrigation Area.
- Table 7. The suitability of Haughton Section - Stage 1, Burdekin River 44 Irrigation Area, for five crops produced under furrow irrigation (sugar-cane, maize and capsicums), flood irrigation of rice and low volume irrigation of mangoes.
- Table 8. Selected limitation subclasses for any UMA unsuitable for sugar-49 cane, maize, rice, capsicums and mangoes, Haughton Section -Stage 1, Burdekin River Irrigation Area.

LIST OF FIGURES

Figure 1.	Location of Haughton Section - Stage 1 survey area (shown by shading).	2
Figure 2.	Physical features and surface contours of Haughton Section - Stage 1, bounded by Haughton Main Channel, Oaky and Barratta Creeks and part of Nine Mile Lagoon Creek.	3

Page

8

Surface drainage features of the Haughton Stage 1 area. Continuous lines indicate broad drainage floors infilled with clay alluvium. Discontinuous lines indicate prior stream and flood-out patterns. The southern boundary of the survey area is shown by	5
Location of representative and additional soil sampling sites, Haughton Section - Stage 1, Nine Mile Lagoon to Oaky Creek, Burdekin River Irrigation Area.	27
Soil pH profiles for (a) weakly sodic duplex soils of landscape unit 6 and (b, c, d) all soils of landscape unit 2, Haughton Section - Stage 1, Burdekin River Irrigation Area. A and B profiles of the Barratta (2Ug) clay soils indicate mound and depression sites respectively.	34
Soil pH profiles for strongly sodic duplex soils of landscape unit 6, Haughton Section - Stage 1, Burdekin River Irrigation Area.	35
ESP profiles for (a) weakly sodic duplex soils of landscape unit 6 and (b, c, d) all soils of landscape unit 2, Haughton Section	37

- sites respectively. Figure 6. Soil pH profiles for strongly se unit 6, Haughton Section - Sta Area. Figure 7. ESP profiles for (a) weakly so unit 6 and (b, c, d) all soils of - Stage 1, Burdekin River Irrigation Area. A and B profiles of the Barratta (2Ug) clay soils indicate mound and depression sites respectively.
- Figure 8. ESP profiles for strongly sodic duplex soils of landscape unit 6, 38 Haughton Section - Stage 1, Burdekin River Irrigation Area.
- Figure 9. Electrical conductivity profiles for (a) weakly sodic duplex 40 soils of landscape unit 6 and (b, c, d) all soils of landscape unit 2, Haughton Section - Stage 1, Burdekin River Irrigation Area. A and B profiles of the Barratta (2Ug) clay soils indicate mound and depression sites respectively.
- Figure 10. Electrical conductivity profiles for strongly sodic duplex 41 soils of landscape unit 6, Haughton Section - Stage 1, Burdekin River Irrigation Area.

Figure 3.

Figure 4.

Figure 5.

SUMMARY

The Burdekin River Irrigation Area (BRIA) is being progressively developed, with new farms being released only after thorough land resource investigation has been completed and irrigation infrastructure is in place. The first section released (Mulgrave Section) adjoins this study area (Haughton - Stage 1).

Stage 1 of the Haughton Section comprises 4147 ha of very gently sloping alluvial terrain bounded by Barratta Creek in the East, Nine Mile Lagoon Creek in the south, Haughton Main Channel (HMC) in the west and Oaky Creek to the north. A detailed soil survey of the area was conducted during the dry seasons of 1987 and 1988. The results of the survey were then used to assess the irrigation potential of the area for crops such as sugar-cane, row crops, rice and horticultural crops.

While the topography of the area is simple, with only 2 landscape units present, the soils are not. Furthermore, previous studies indicated that some of the soils in this section were strongly sodic, raising problems for irrigated cropping. This study confirms that soils will be the primary constraint on irrigation options in this area.

Landscape units and soils

There are two landscape units in Haughton Section 1; the Alluvial Plains of the Burdekin and Haughton Rivers; and the Miscellaneous Alluvial Landforms.

The Alluvial Plains. Approximately 80 per cent of the area (3280 ha) was mapped as part of the alluvial plains, landscape unit 2. Soils of this landscape unit comprise Barratta cracking clays and sodic duplex Oakey and Dowie soils. The Barratta clays occupy 1334 ha, often in the lowest positions in the landscape. Between Nine Mile Lagoon and Lagoon Creeks, areas of these clay soils act as pathways for contemporary drainage into Barratta creek.

The sodic duplex soils of the alluvial plains occupy 1946 ha and are located on either low rises or on the sloping margins of the area. Within the alluvial plains there is a much higher proportion of sodic duplex soils when compared to other areas of alluvial plains east of Barratta Creek. This is particularly obvious in the area north of Lagoon Creek. Many of the sodic duplex soils of landscape unit 2 are the shallow-surfaced soil types: 2Dda, 2Dya, 2Dba and 2Ddb. The very sodic Dowie soil types (2Dba, 2Ddb) are extensive (503 ha) and occur in such patterns as to represent a major constraint to the development of the area.

Miscellaneous Alluvial Landforms. The Miscellaneous Alluvial Landforms, landscape unit 6, consist of levees, flood-outs, fans, channel benches and prior streams. These landforms cover 867 ha and comprise a wide range of soils. Such soil complexity reflects the extremely varied composition of parent alluvium from more recent levee deposits along Lagoon and Oaky Creeks, siliceous prior stream deposits and earlier flood-outs of Oaky, Lagoon and Nine Mile Lagoon Creeks. In addition to the problem of soil complexity, most of the soils of this landscape unit are highly sodic duplex soils and are situated close to HMC.

In all, some 275 unique map areas (UMAs) were described in Haughton Stage 1, ranging in size from less than 1 ha to 228.3 ha. The modal UMA size of less than 10 ha reflects the complexity of this alluvial landscape; the soils of which show patterns of sequential deposition of alluvium and burial of prior stream systems.

Altogether, the sodic duplex soils occur over 2730 ha or 65 per cent of Haughton Stage 1, almost double the average incidence of these soils in the BRIA. At least 60% by area of the sodic duplex soils in Haughton Stage 1 are strongly sodic (ESP > 15) by a depth of 0.3 m. This adverse chemical characteristic together with shallow surface horizons and significant soluble salt levels at depth, will severely limit soil water entry and extraction by plant roots.

Areas of land suitable for irrigated cropping

In terms of irrigation farm design, the southern part of the area will prove the most difficult, due to problems associated with soil complexity and the distribution of unsuitable soils. In particular, there are large areas of unsuitable soils located close to HMC.

Sugar-cane. A total of 2947 ha of Haughton Stage 1 has been assessed as suitable for the production of sugar-cane under furrow irrigation. While this represents a significant area, sodic duplex soils make up a considerable proportion of the suitable area, usually with a moderate sodicity limitation based on field pH as an indicator. The chemical analyses reported herein indicate that excessive sodicity may be a more severe limitation in Haughton Stage 1 than for other areas of the BRIA with similar sodic duplex soil types. As such, much of this area rated as suitable for sugar-cane may in fact be marginal i.e., class 4, if the sodic duplex soils of the area were more exhaustively analysed.

Row crops. Less land (2270 ha) is suitable for the furrow irrigation of maize and this area could be further reduced if a more severe sodicity limitation does exist. Irrigation farm design based on such a crop would be very difficult due to the limited amount of suitable land and its distribution some distance from HMC. The cropping potential of Haughton Stage 1, however, does improve considerably when a more salt and sodium tolerant row crop such as cotton is considered (2830 ha suitable).

Rice. As it is less costly to reduce the effect of excessive sodicity, rice production by flood irrigation offers perhaps the preferred land use for this area with 2106 ha assessed as suitable. Excessive deep drainage and slope in some areas are the main limitations which reduce the area suitable for rice production.

Horticultural crops. Haughton Stage I does not contain appreciable areas of land suitable for the furrow irrigation of small crops such as capsicums or production of mangoes by means of low volume irrigation. The areas assessed as suitable for the production of such crops are 110 ha and 140 ha respectively.

1. INTRODUCTION

In the Burdekin River Irrigation Area (BRIA), the Queensland Department of Primary Industries (QDPI) is undertaking a series of high intensity soil surveys at a scale of 1:25 000. These surveys are principally required to provide the Water Resources Commission (WRC) with detailed land resource information and an assessment of land suitability for irrigation farm design. This information is also provided to prospective purchasers prior to the release of farms by the WRC and subsequently to new landholders to assist with farm development planning and crop management.

Haughton Stage 1 covers 4147 ha and is located 9 km west of the town of Clare on the left bank of the Burdekin River (shown in Figure 1). Early in 1987, it was thought that Haughton Stage 1 represented the next area after Mulgrave Section to be developed for irrigation with water from the newly constructed Haughton Main Channel even though an earlier broadscale soil survey by Reid and Baker (1984) indicated the existence of substantial areas of highly sodic duplex soils in this area.

Due to the perceived high priority for its development the detailed survey of Haughton Stage 1 commenced in the area between Nine Mile Lagoon Creek and Lagoon Creek (shown in Figure 2) during the dry season of 1987 and then extended to Oaky Creek in 1988 to complete Haughton Stage 1. Preliminary assessments of the irrigation potential of the area were provided to the WRC during the course of the work and these have tended to lower the development priority earlier afforded to Haughton Stage 1.

This report provides a summary of the results of the irrigated land suitability assessment and the detailed soil survey on which it was based. Constraints to irrigation farm design and potential land degradation hazards have been highlighted together with more detail on some of the highly sodic soils of the area.

The map contained in the rear of the report shows the soils of the area at a scale of 1:25 000 and land suitability for five commonly grown crops at a scale of 1:50 000. Working plans showing the same information and the land suitability assessment separately for each crop at a scale of 1:10 000 are available from QDPI.

Figure 1. Location of Haughton Section - Stage 1 survey area (shown by shading).

Figure 2. Physical features and surface contours of Haughton Section - Stage 1, bounded by Haughton Main Channel, Oaky and Barratta Creeks and part of Nine Mile Lagoon Creek.

•

2. PHYSIOGRAPHY

2.1 Climate

The climate of the area is characterised by well defined wet and dry seasons with the dry season extending over the cooler months from May to September. The nearest weather recording station to the survey area is situated at Clare, 9 km to the east.

Temperature and evaporation rates for the Haughton Stage 1 area are expected to be very similar to those recorded at Clare; average temperature range is about 20.5 to 32.3°C (October to April) and 13.0 to 27.3°C (May to September) and evaporation is at a maximum over the period October to January. Rainfall is likely to be slightly higher than at Clare due to the convectional influence of adjacent hills to the west of the Haughton River. The average annual rainfall for Clare is 893 mm. Seventy-five percent of the total rainfall falls between December and March and rainfall variability is high.

A more detailed analysis of the weather data recorded for Clare is provided in Donnollan et al. (1990).

2.2 Topography

The topography of the survey area is relatively uniform with little variation in elevation; slopes are commonly less than 1 in 200. Approximately 80 per cent of the area is alluvial plain (landscape unit 2) with the residue being miscellaneous alluvial landforms (landscape unit 6). The miscellaneous alluvial landforms consist of levees, flood-outs, fans, channel benches and prior streams located mainly adjacent to the Haughton Main Channel and Lagoon and Oaky Creeks (see accompanying map).

2.3 Surface drainage

Surface drainage of the area between Nine Mile Lagoon Creek and Oaky Creek has followed many different paths over time. This is reflected in surface features such as prior stream patterns, discrete flood-out deposits and fans which have been abandoned and previous drainage depressions which have been infilled by fine textured alluvium.

Some of these features have been highlighted in Figure 3. The main creeks that currently drain the area have been labelled on Figure 3. It should be noted that Lagoon Creek which flows through the centre of Haughton Stage 1 actually commences as an overflow distribution channel of Oaky Creek (shown by arrows).

Outbreaks of Oaky Creek and Nine Mile Lagoon Creek have been numerous and are clearly demonstrated by the prior stream and flood-out patterns such as those adjacent to HMC (Figure 3). The extent and location of some of these features is shown by discontinuous lines in Figure 3.

DPI Ref. No. 93-HTS-I-A4-3001

Figure 3. Surface drainage features of the Haughton Stage 1 area. Continuous lines indicate broad drainage floors infilled with clay alluvium. Discontinuous lines indicate prior stream and flood-out patterns. The southern boundary of the survey area is shown by •••••••••••

In some instances the prior streams are elevated above the surrounding terrain with very coarse textured soils along the centre of the prior stream (eg. UMA38). In other situations they are evidenced by sandy ridges (eg UMAs 62 and 64 in the south and 224 in the north), flanked by areas of sodic duplex soils which may have developed by prior microtopographic salinisation - solonisation.

Other areas are characterised by intense patterns of very narrow prior streams within large areas of highly sodic duplex soils (eg. UMA72). All prior streams identified while in the field have been shown on the 1:25 000 scale soils map with discontinuous lines.

Some of the most extensive relict flood-out deposits occur adjacent to Nine Mile Lagoon Creek in the south of the area. Much of this southern area overlies coarse textured material within 1.5 m of the surface. The associated discrete occurrences of raised gravelly deposits (6Dyg4, UMA 19 and 21) suggest a major prior drainage path through this part of the area.

Infilling of previous drainage depressions with finer textured alluvium has been extensive and these areas of cracking clay soils still carry a considerable amount of surface flow towards Barratta Creek where they become incised for short distances (shown by continuous lines on Figure 3).

2.4 Predevelopment flooding

Major floods such as those experienced in 1940, 1946 and 1958 have a probability of occurrence of once in 35 years. Resulting flooding would inundate most of Haughton Stage 1 to a depth of over 1 m (McIntyre and Associates, unpublished). Inundation would exceed 2 m over about half of Haughton Stage 1 adjacent to Barratta, Lagoon and Oaky Creeks. Such severe flooding of the area occurs due to the outbreak of floodwaters from the Burdekin River further upstream and meeting local runoff along the line of Barratta Creek. Flooding of Barratta Creek would then hold up runoff flowing down both Lagoon and Oaky Creeks. Flooding is particularly deep along Oaky Creek due to supplementation by smaller local creeks within its catchment and the outbreak of floodwaters from the Haughton River near Piccaninny Creek.

McIntyre and Associates concluded that inundation of much of Haughton Stage 1 may only be for a short duration once the major rivers are no longer breaking their banks. However, the area adjacent to Barratta and Oaky Creeks may remain inundated for a longer period due to the concentration of local runoff and floodwaters down Barratta Creek. These more deeply flooded areas (>2 m) are also likely to have the highest rates of flow which would be very damaging to crops. Considering the depth of inundation over existing cane growing areas in the lower Burdekin, McIntyre and Associates recommended that the 2 m flood depth contour associated with a 35 year flood be adopted as the limit for cane expansion.

2.5 Vegetation

Reid and Baker (1984) provide a description of the general relationships between vegetation and soils over the entire left bank of the BRIA which includes the Haughton Stage 1 area. The area retains most of its original vegetation with minimal clearing of the open woodlands. Appendix I provides a list of both common and scientific names of the species recorded during this soil survey. Table 1 lists the predominant structural form and species of vegetation recorded on each of the soil types mapped within Haughton Stage 1. Structural formation terminology follows that of Walker and Hopkins (1984).

In general terms, Haughton Stage 1 is lightly timbered, due mainly to the predominance of sodic duplex soils over much of the area (2730 ha or 65 per cent). Sodic duplex soils are also often present as secondary soils in complex soil units which results in reduced tree canopy cover and height. Low to mid-high isolated trees or open woodlands of cabbage gum and beefwood form the predominant vegetation on the sodic duplex soils. A tall shrubland of beefwood and false sandalwood can also occur on some of the most sodic soils of this group. Grasses vary from tussock grassland of blue grasses, black spear grass and kangaroo grass, to sparse tussock grassland of the same species; together with purple top Rhodes grass on the most sodic soils of this group.

Low to mid-high open woodlands of poplar gum with carbeen and cabbage gum associated with tussock grassland of blue grasses, black spear grass and kangaroo grass is the predominant vegetation on the Barratta clays (2Ug soils) of the alluvial plain. Tree canopy cover is greatest on the more low lying areas of 2Ugd soils and least on the slightly more elevated areas of 2Ugh soils which have heavier surface texture.

The tallest and most dense tree cover occurs on the minor areas of better drained soils of levees and prior streams throughout the area. The predominant vegetation on such soils (eg. 6Ucc, 6Dra, 6Dbe, 6Dya) is mid-high woodland to open woodland of grey bloodwood, poplar gum and carbeen, associated with tussock grassland of black spear grass, giant spear grass and golden beard grass.

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
Landsca	pe Unit 2:	Burdekin and Haughton River	alluvial plains		
		Low lying flats			
2Uga	Barratta	0.01-0.02 m weak to moderate self mulch over grey to dark medium to heavy clay to 0.05-0.10 m over alkaline grey to dark medium to heavy clay to 1.00-1.35 m over brown medium to heavy clay to 1.50+ m. Normal gilgai, less than 0.10 m vertical interval.	Grey clay - black earth	Ug5.29 Ug5.17	Mid-high open woodland of poplar gum and carbeen associated with tussock grassland of blue grasses.
2Ugc	Barratta	Weakly self mulching to hard setting surface over bleached, brown-mottled grey to dark light to light medium clay to 0.05-0.15 m over neutral to moderately alkaline grey medium to heavy clay to 1.20 m over moderately to strongly alkaline brown light to light medium clay to 1.5+ m. Normal gilgai, 0.05-0.20 m vertical interval.	(Bleached) ⁺⁺ grey clay - (bleached) black earth	Ug3.2 Ug3.1	Low to mid-high open woodland of poplar gum and carbeen associated with tussock grassland of blue grasses.
2Ugd	Barratta	Weakly self mulching to hard setting surface over bleached, brown-mottled grey to brown light to light medium clay to 0.10-0.25 m over brown-mottled grey to brown medium clay to 1.00-1.20 m over grey to brown light medium to medium heavy clay to $1.50 + m$, strongly alkaline at and below $0.90-1.20$ m. Normal gilgai, $0.10-0.30$ m vertical interval.	(Bleached) grey and brown clay	Ug3.2 Ug3.3	Low to mid-high open woodland of poplar gum and carbeen associated with tussock grassland of blue grasses, kangaroo grass and black spear grass.

Table 1. Major distinguishing attributes of the soil types, Haughton Section - Stage I, Nine Mile Lagoon to Oaky Creek, Burdekin River Irrigation Area

	Table	1.	(Cont.)
--	-------	----	---------

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
2Uge	Barratta	Weakly self mulching to hard setting surface over frequently bleached, brown-mottled grey to brown or dark light to light medium clay to 0.05-0.25 m over brown-mottled grey to brown medium to medium heavy clay to 0.80-1.30 m over brown light medium to medium clay to $1.50+$ m, strongly alkaline above or at 0.60 m. Normal gilgai, 0.05-0.30 m vertical interval.	(Bleached) grey clay - grey and brown clay - black earth	Ug3.2 Ug5.25 Ug3.3 Ug5.17	Low to mid-high open woodland of poplar gum with carbeen, cabbage gum and beefwood associated with tussock grassland of blue grasses, black spear grass and kangaroo grass.
2Ugf	Barratta	0.01-0.02 m moderate self mulch over brown- mottled grey medium clay to 0.05-0.20 m over brown-mottled grey medium heavy clay to 1.20-1.50 + m over grey to brown medium clay to 1.50 + m, strongly alkaline at 1.20-1.50 m. Normal gilgai, 0.10-0.50 m vertical interval.	Grey clay	Ug5.25 Ug5.28	Low to mid-high open woodland of poplar gum and carbeen with broad leaf tea-tree associated with tussock grassland of blue grasses.
2Ugg	Barratta	0.01-0.02 m moderate self mulch over occasionally bleached, brown-mottled grey to dark medium clay to 0.10-0.20 m over grey medium to medium heavy clay to 0.80-1.20 m over brown to yellow-brown light to medium clay to 1.50+ m, strongly alkaline at and below 0.60-0.90 m. Normal gilgai, 0.10-0.30 m vertical interval.	Grey clay - (bleached) grey clay-black earth	Ug5.28 Ug3.2 Ug5.17	Low to mid-high open woodland of poplar gum and carbeen with cabbage gum associated with tussock grassland of blue grasses and cane grass.

Table	1.	(Cont.)
		(

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
2Ugh	Barratta, Yalinga	0.01-0.02 m moderate to strong self mulch over brown-mottled grey medium to medium heavy clay to 0.10-0.15 m over grey medium to medium heavy clay to $1.00-1.50 + m$ over brown light medium to medium heavy clay to 1.50 + m, strongly alkaline at and below 0.30 m. Normal gilgai, 0.10-0.30 m vertical interval.	Grey clay	Ug5.29 Ug5.28 Ug5.25	Mid-high isolated trees to open woodland of carbeen, poplar gum and cabbage gum with tussock grassland of blue grasses, cane grass and Flinders grass.
2Ugk	Barratta	Normal gilgai 0.10-0.30 m vertical interval. <u>Mound</u> : 0.01-0.02 m weak to strong self mulch over grey to dark medium to medium heavy clay to $1.00-1.50+$ m over brown to yellow-brown light medium to medium clay D horizon to $1.50+$ m, strongly alkaline at and below 0.30-0.60 m.	Grey clay - black earth	Ug5.2 Ug5.29 Ug5.17	Low to mid-high open woodland of poplar gum, carbeen and cabbage gum associated with tussock grassland of blue grasses and cane grass.
		<u>Depression</u> : Weakly cracking, hard setting surface over bleached, brown-mottled grey to dark light to light medium clay to 0.05-0.10 m over brown-mottled grey light medium to medium clay to 0.30-0.60 m over grey to yellow-brown medium clay to 0.70-1.20 m over brown to yellow-brown light to light medium clay D horizon to 1.50 + m, strongly alkaline at and below 0.60-0.90 m.	(Bleached) grey clay - (bleached) black earth	Ug3.2 Ug3.1	

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
		Slightly elevated flats			
2Dba	Dowie	0.05-0.12 m brown loam - fine sandy to clay loam A horizon bleached throughout or near base over brown medium clay B horizon to 0.70-1.50 + m over brown to yellow-brown light to light medium clay D horizon to 1.50 + m, strongly alkaline at and below 0.30 m.	Solodic-solodized solonetz	Db1.33 Db1.43	Low to mid-high isolated trees of cabbage gum, beefwood and poplar gum or tall shrubland of beefwood and false sandalwood associated with open to sparse tussock grassland of blue grasses, black spear grass, purple top Rhodes grass and button grass.
2Dbb	Oakey	0.05-0.15 m dark to brown loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.12-0.20 m over brown medium clay B horizon to $0.70-1.50 + m$ over brown to yellow-brown fine sandy clay to light medium clay D horizon to $1.50 + m$, strongly alkaline above or at 0.60 m.	Solodic-solodized solonetz	Db1.33 Db1.43	Low to mid-high open woodland or isolated trees of cabbage gum and beefwood with carbeen and poplar gum associated with tussock grassland of purple top Rhodes grass, black spear grass and blue grasses.
2Dbc	Oakey	0.05-0.25 m dark to grey loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.20-0.35 m over brown-mottled grey to brown medium clay B horizon to 0.70-1.30 m over brown to yellow-brown fine sandy clay to light medium clay D horizon to 1.50 + m, strongly alkaline at and below 0.90-1.20 m.	Solodic-solodized solonetz	Dy3.33 Db2.33	Mid-high open woodland of poplar gum, cabbage gum and beefwood associated with tussock grassland of black spear grass, blue grasses and kangaroo grass.

Table 1. (Cont.)

Table	: 1. -	(Cont.)
		()

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
2Dbd	Oakey	0.10-0.20 m brown-mottled dark to brown loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.20-0.35 m over dark to brown medium clay B horizon to 0.70-1.00 m over brown to yellow-brown fine sandy clay to medium clay D horizon to 1.50 + m, strongly alkaline at and below 0.60 m.	Solodic-solodized solonetz	Dd1.33 Dd1.43 Db1.33	Low to mid-high open woodland or isolated trees of cabbage gum, poplar gum and beefwood associated with tussock grassland of black spear grass, blue grasses and kangaroo grass.
2Dya	Oakey	0.05-0.12 m brown-mottled dark to brown loam - fine sandy to clay loam A horizon bleached throughout or near base over frequently brown-mottled grey to brown medium clay B horizon to 0.60-1.20 m over brown to yellow-brown light medium to medium clay D horizon to 1.50+ m, strongly alkaline at and below 0.60 m. Frequently normal gilgai, less than 0.10 m vertical interval.	Solodic-solodized solonetz	Dy3.33 Dy2.33 Db2.33 Db1.33	Mid-high open woodland or isolated trees of cabbage gum, poplar gum and beefwood associated with tussock grassland of blue grasses, black spear grass and kangaroo grass.
2Dyb	Oakey	0.05-0.10 m brown-mottled dark to brown loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.12-0.20 m over dark to grey medium to medium heavy clay B horizon to 0.60-1.20 m over brown to yellow- brown fine sandy clay to medium clay D horizon to $1.50 + m$, strongly alkaline above or at 0.60 m.	Solodic-solodized solonetz	Dd1.33 Dd1.43 Dy2.33 Dy2.43	Low to mid-high open woodland of cabbage gum, poplar gum, beefwood and carbeen associated with tussock grassland of black spear grass, blue grasses and purple top Rhodes grass.

Table 1. (Con	ıt.)	
---------------	------	--

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation	
2Dda	Oakey	0.05-0.12 m brown-mottled dark to brown sandy clay loam - fine sandy to clay loam A horizon bleached throughout or near base over dark to brown medium to medium heavy clay B horizon to 0.60-0.90 m over brown to yellow-brown light to medium clay D horizon to $1.50 + m$, strongly alkaline at and below 0.60-0.90 m.	Solodic-solodized solonetz	Dd1.33 Dd1.43 Db1.33	Mid-high isolated trees or open woodland of cabbage gum and beefwood associated with tussock grassland of black spear grass and blue grasses.	
2Ddb	Dowie	0.05-0.12 m brown-mottled dark to brown loam - fine sandy to clay loam A horizon bleached throughout or near base over dark to grey medium to medium heavy clay B horizon to 0.60-1.00 m over brown to yellow-brown light to medium clay D horizon to 1.50+ m, strongly alkaline at and below 0.30 m.	Solodic-solodized solonetz	Dd1.33 Dy2.33	Mid-high isolated trees or open woodland of cabbage gum, beefwood, carbeen and poplar gum associated with open tussock grassland of black spear grass, blue grasses, purple top Rhodes grass and kangaroo grass.	

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
2Ddc-2Ugi		Linear gilgai complex. Vertical interval of gilgai less than 0.05 m, 60-70% depression.			Mid-high open woodland of cabbage gum, carbeen and beefwood associated with tussock
		<u>Depression</u> (2Ddc): 0.05-0.20 m brown- mottled dark clay loam A1 horizon over bleached A2 horizon to 0.20-0.35 m over strongly alkaline dark to grey medium to heavy clay B horizon to 0.80-1.20 m over grey to brown medium to heavy clay B horizon to 1.00-1.40 m over yellow-brown light medium to medium clay D horizon to 1.50+ m.	Solodic-solodized solonetz	Dd1.33 Dy2.33	grassland of black spear grass, blue grasses, kangaroo grass and Flinders grass.
		<u>Mound</u> (2Ugi): 0.01-0.02 m moderate to strong self mulch over grey to brown medium to heavy clay to 0.10-0.20 m over strongly alkaline grey to brown medium to heavy clay to 1.00-1.30 m over yellow-brown medium clay D horizon to 1.50+ m.	Grey and brown clay	Ug5.2 Ug5.3	
Landsca	pe Unit 6:	Miscellaneous alluvial landform	IS		
		Levees, flood-outs, fans and prior st	reams		
6Uca	Yellabin	0.10-0.30 m dark coarse sand to sandy loam A horizon over acid to neutral brown to yellow-brown coarse sand to sandy loam B horizon to 0.80-1.00 m over brown-mottled coarse sand D horizon to 1.50+ m.	No suitable group, affinities with earthy sand	Uc5.11 Uc5.21 Uc5.23	Low to mid-high woodland of pandanus, broad leaf tea-tree and grey bloodwood with cocky apple and poplar gum associated with tussock grassland of giant and black spear grass.

Table 1. (Cont.)

14.

Table 1. (Cont.)

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
6Ucb	Hylo	0.20-0.30 m dark to grey or brown coarse sand to sandy loam A1 horizon over bleached A2 horizon to 0.50-0.60 m over acid to neutral frequently yellow or brown-mottled yellow- brown to brown coarse sand to sandy loam B horizon to 1.50+ m.	No suitable group, affinities with siliceous sand or earthy sand	Uc2.21 Uc2.22 Uc3.21	Mid-high woodland of poplar gum, carbeen, grey bloodwood and broad leaf tea-tree associated with tussock grassland of giant and black spear grass.
6Ucc	Burdekin	0.05-0.50 m dark to brown sand to fine sandy loam A1 horizon over grey, brown or yellow A12 or A2 horizon to 0.50-1.10 m over acid to neutral brown to yellow sand to light sandy clay loam A3 or B horizon to $1.50 + m$.	No suitable group, affinities with siliceous sand or earthy sand	Uc5.21 Uc5.11 Uc5.23 Uc4.21	Mid-high woodland to open woodland of poplar gum, grey bloodwood, broad leaf tea-tree and pandanus associated with tussock grassland of giant and black spear grass and golden beard grass.
6Dra	Lancer	0.15-0.30 m dark to grey sandy loam to light sandy clay loam A1 horizon over occasionally bleached, brown to red-brown sandy loam to light sandy clay loam A2 horizon to 0.20-0.50 m over acid to neutral yellow- mottled red to red-brown medium clay B horizon to $0.85-1.50 + m$ over yellow-brown to brown sandy clay loam to sandy clay D horizon to $1.50 + m$.	Red podzolic soil	Dr3.32 Dr3.22 Dr3.31	Mid-high woodland of grey bloodwood, poplar gum and carbeen with cocky apple associated with tussock grassland of black spear grass, giant spear grass and brown sorghum.

Lable I. (Contin)	Ta	ble	1.	(Cont.)
-------------------	----	-----	----	--------	---

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
6Dba		0.10-0.20 m dark to brown sandy loam to sandy clay loam A1 horizon over bleached A2 horizon to 0.15-0.30 m over occasionally yellow-mottled brown light medium to medium clay B horizon to 0.50-1.30 m over yellow- brown to brown sandy clay to medium clay D horizon to $1.50 + m$, alkaline at and below 0.60 m.	Solodic-solodized solonetz	Db1.33 Db1.43 Db2.33 Db2.43	Low to mid-high open woodland or isolated trees of poplar gum, carbeen, grey bloodwood, cabbage gum and beefwood associated with tussock grassland of black spear grass, blue grasses and Rhodes grass.
6Dbe	Glenalder	0.05-0.15 m brown-mottled dark to brown loam to clay loam A1 horizon over bleached A2 horizon to 0.10-0.20 m over alkaline red- mottled brown medium clay B horizon to 0.55-0.70 m over brown to grey loamy sand to light medium clay D horizons to 1.50+ m.	Red-brown earth	Db2.33 Db2.43	Mid-high woodland to open woodland of poplar gum, grey bloodwood and carbeen associated with tussock grassland of blue grasses, black spear grass and golden beard grass.
6Dbh		0.05-0.15 m dark to brown sandy clay loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.10-0.25 m over strongly alkaline brown medium clay B horizon to 0.60-1.00 m over brown clay loam to light medium clay D horizon to 1.50+ m.	Solodic-solodized solonetz	Db1.33 Db1.43	Low to mid-high isolated trees of beefwood and cabbage gum or tall shrubland of false sandalwood associated with open tussock grassland of purple top Rhodes grass and blue grasses.
6Dya		0.10-0.40 m dark to brown or grey loamy sand to sandy loam A1 horizon over bleached, yellow-mottled grey to yellow-brown loamy sand to sandy loam A2 horizon to 0.60-1.20 m over acid to neutral red or grey-mottled yellow to yellow-brown or yellow-grey sandy clay to medium clay B horizon to 1.50+ m.	Yellow podzolic soil	Dy3.32 Dy3.31 Dy3.42	Mid-high woodland of poplar gum and grey bloodwood with broad leaf tea-tree associated with tussock grassland of black and giant spear grass.

Table	1.	(Cont.)
-------	----	---------

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
бДуЪ		0.15-0.30 m dark to brown loamy sand to sandy loam A1 horizon over bleached, grey to yellow-brown loamy sand to sandy loam A2 horizon to 0.30-0.60 m over acid to neutral red or grey-mottled yellow-brown to yellow- grey sandy clay to medium clay B horizon to 1.50 + m.	Soloth-solodic soil	Dy3.32 Dy3.42 Dy3.31	Mid-high open woodland to woodland of poplar gum and grey bloodwood with carbeen and broad leaf tea-tree associated with tussock grassland of black spear grass, giant spear grass and blue grasses.
6Dye	Kelona	0.20-0.40 m brown-mottled grey to brown or dark loamy sand to sandy loam A1 horizon over bleached A2 horizon to 0.30-0.60 m over alkaline red-mottled grey to yellow-brown or yellow medium clay B horizon to 1.00 - 1.50 + m over yellow-grey to yellow sandy clay D horizon to $1.50 + m$.	Solodic-solodized solonetz	Dy3.43 Dy3.33	Mid-high open woodland of grey bloodwood and poplar gum with carbeen, broad leaf tea-tree and beefwood associated with tussock grassland of black spear grass and giant spear grass.
6Dyf		0.10-0.25 m dark to brown or grey loam - fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.25-0.50 m over alkaline red-mottled brown to yellow-brown or yellow medium clay B horizon to 1.00 m over brown sandy clay to light medium clay D horizon to 1.50 + m.	Solodic-solodized solonetz	Dy3.33 Dy3.43 Db2.33	Mid-high open woodland of poplar gum, carbeen and cabbage gum with grey bloodwood and beefwood associated with tussock grassland of black and giant spear grass and kangaroo grass.
6Dyg	Kelona	0.05-0.10 m grey to dark or brown sandy clay loam to loam A1 horizon over bleached A2 horizon to 0.10-0.30 m over strongly alkaline frequently brown-mottled grey to yellow- brown or yellow light medium to medium clay B horizon to 0.70-1.20 m over brown-mottled yellow-brown to grey clay loam to light medium clay D horizon to 1.50+ m.	Solodic-solodized solonetz	Dy3.33 Dy3.43 Dy2.33 Dy2.43	Mid-high open woodland or isolated trees of cabbage gum, carbeen, poplar gum, grey bloodwood and beefwood associated with tussock grassland of black spear grass and purple top Rhodes grass.

Table	1.	(Cont.)
-------	----	---------

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
бDуј		0.02-0.10 m brown to grey sandy clay loam to clay loam A1 horizon over bleached A2 horizon to 0.05-0.15 m over occasionally brown or yellow-mottled yellow-brown to brown light medium to medium clay B horizon to 0.60-1.00 m over brown to yellow-brown or yellow-grey clay loam to medium clay D horizon to $1.50 + m$, strongly alkaline at and below 0.30 m.	Solodic-solodized solonetz	Db1.33 Db2.33 Dy2.33	Mid-high open woodland or isolated trees of cabbage gum and beefwood, or tall shrubland of false sandalwood associated with open tussock grassland of blue grasses, giant and black spear grass and purple top Rhodes grass.
6Ddb		0.15-0.30 m dark to grey or brown coarse sand to sandy clay loam A1 horizon over bleached A2 horizon to 0.25-0.50 m over occasionally brown-mottled alkaline dark medium clay B horizon to 0.60-0.70 m over yellow-brown to yellow clay loam to light medium clay D horizon to 1.50+ m.	Solodic soil	Dd1.43 Dd1.33 Dd2.43	Mid-high open woodland of cabbage gum, poplar gum, carbeen and beefwood associated with tussock grassland of blue grasses and black spear grass.
		Channel benches			
6Ugc		Hard setting surface over brown-mottled, dark to grey light clay to $0.10-0.20$ m over bleached brown-mottled dark to grey light clay to $0.15-0.30$ m over alkaline grey medium clay to $0.75-1.50 +$ m over grey to brown light clay to $1.50 +$ m.	(Bleached) grey clay	Ug3.2	Tall woodland of carbeen and tea-tree associated with tussock grassland of blue grasses, kangaroo grass and black spear grass.

Table	1.	(Cont.)
		· /

Soil type	Series affiliation	Major distinguishing attributes	Great Soil Group	Main Principal Profile Forms	Predominant natural vegetation
6Gna	Farencer	0.20-0.40 m dark clay loam A horizon over neutral to alkaline brown to dark light to medium clay B horizon to 0.90-1.20 m over brown sandy clay loam to sandy clay D horizon to 1.50+ m.	No suitable group, affinities with alluvial soil	Db1.12 Db1.13 Gn3.42 Dd1.12	Mid-high open woodland to woodland of carbeen, poplar gum and beefwood associated with tussock grassland of giant spear grass, black spear grass and brown sorghum.
6Dbb	Kelona	0.10-0.25 m dark to grey loam, fine sandy to clay loam A1 horizon over bleached A2 horizon to 0.30-0.40 m over alkaline brown to dark medium clay B horizon to 1.00-1.20 m over brown to dark light medium to medium clay D horizon to 1.50+ m.	Solodic soil	Db1.33 Db1.43 Dd1.43 Dd1.33	Mid-high open woodland to isolated trees of poplar gum, carbeen, cabbage gum and grey bloodwood associated with tussock grassland of black spear grass, giant spear grass and brown sorghum.
6Dyd	Tootra	0.10-0.20 m brown-mottled grey to dark or brown loam to clay loam A1 horizon over bleached A2 horizon to 0.20-0.40 m over acid to neutral red-mottled yellow-brown to brown medium to medium heavy clay B horizon to 0.50-0.80 m over yellow-brown to brown or red sandy clay to medium clay D horizon to 1.50 + m.	Brown podzolic soil	Db2.32 Dy3.42 Dy3.32	Mid-high open woodland of poplar gum, carbeen and grey bloodwood associated with tussock grassland of black and giant spear grass.
		Backplains and depressions			
6Dda		0.10-0.15 m dark to brown clay loam A1 horizon over bleached A2 horizon to 0.15-0.25 m over alkaline dark medium clay B horizon to 0.50-0.90 m over brown to yellow-brown clay loam to light medium clay D horizon to 1.50+ m.	Solodic-solodized solonetz	Dd1.33 Dd1.43	Mid-high open woodland to isolated trees of poplar gum, carbeen, beefwood and grey bloodwood associated with tussock grassland of black spear grass, blue grasses and Rhodes grass.

3. SOILS

3.1 Soil survey methodology

A free survey technique was used which utilised aerial photo interpretation to assist in the location of soil boundaries. Fully rectified colour aerial photographs at a scale of 1:10 000 were used in the field to mark up soil boundaries and mapping sites. Prior to the commencement of field work, WRC surveyors established a 250 x 100 m grid as part of a level survey and this grid permitted the precise location of field mapping sites.

The mapping site intensity was varied depending on soil landscape complexity. The intensity was lowest in areas of cracking clay soils and greatest in the miscellaneous alluvial landforms (landscape unit 6). All field work was conducted by vehicle traverse. A total of 794 mapping sites were described and stored on computer in a site description file. This site intensity is approximately one per 6 hectares which is the maximum recommended for 1:25 000 scale mapping but the minimum for 1:10 000 scale mapping (Reid 1988). The latter scale is currently being used by WRC in the design of 40 to 100 ha sized irrigation farms in the BRIA.

All map unit boundaries and the location of prior streams and gully erosion (where observed) have been entered onto a GIS using the software ARC/INFO.

A description of the soil profile and information on vegetation, soil surface characteristics, microrelief (gilgai) and slope where necessary were recorded at each mapping site using the terminology and codes of McDonald *et al.* (1984). AMG coordinates were determined for each mapping site and added to the site description file.

3.2 Soil taxonomic and mapping units

To distinguish broad land types, Thompson (1977), Reid and Baker (1984) and Thompson *et al.* 1990 identified seven topographic forms within the lower Burdekin Valley. The term "topographic form" has since been replaced by the term "landscape unit" which can be defined as a natural unit of land in which a particular soil or association of soils is developed from a single rock type or complex of rock types. The soils bear a constant relationship to a limited range of landform elements or native vegetation communities and there is a similar drainage net throughout the landscape unit. As such the landscape unit is identical to the broadscale mapping unit known as the land system which many readers may be more familiar with.

In the survey area, only two landscape units were identified. There were: landscape unit 2 - Alluvial plains of the Burdekin and Haughton Rivers and, landscape unit 6 - Miscellaneous alluvial landforms. In Haughton Stage 1, landscape unit 6 comprised alluvial landforms associated with current and relict streams. The soil taxonomic system developed for the lower Burdekin Valley (Thompson and Reid 1982) identifies each soil type (previously termed a soil profile class) via a four digit alphanumeric code: a number for the landscape unit; two letters for the appropriate subdivision of the Primary Profile Form (Northcote 1979) and one letter to separate each soil type. This final letter denotes either morphological differences or soil characteristics that may significantly influence the performance of that soil type under irrigated crop production. For example, the code 2Ugd denotes a soil type of landscape unit 2 (Burdekin and Haughton River alluvial plains); the "Ug" indicates that the soil type is a uniform textured cracking clay within the Factual Key of Northcote (1979) and the final letter "d" separates this soil type from other soil types of the same landscape unit due to different morphological and chemical characteristics.

During mapping, each soil profile described was assigned to a soil type within the soil taxonomic system outlined above. In some instances soil profiles were classified as a variant of a particular soil type where a morphological difference was observed from that of the modal soil type. A number after the soil type code eg. 2Ugd2 distinguishes the variants and these are listed in Table 2.

In some areas where a land attribute not normally associated with the soil type was identified and was thought to have a significant influence on land use, then the particular mapping unit was identified as a phase of the soil type. A capital letter after the soil type code distinguishes the phase, for example, 2DbbE for an eroded 2Dbb mapping unit.

Each of the soil types mapped within Haughton Stage 1 are listed in Table 1 together with the older soil series nomenclature of Hubble and Thompson (1953). Also listed in Table 1 are the appropriate Great Soil Group terms (where applicable) from Stace *et al.* (1968) and the main Principal Profile Forms (Northcote 1979) for each soil type. As the new Australian soil classification (Isbell 1992) was not available at the time of this survey, equivalent classes according to the new system have not been provided. However, a correlation between Burdekin soil types and the new classification can be found in Loi and Day (in prep.).

In terms of naming the soil mapping units, two types of mapping units were used. A simple mapping unit was used where one particular soil type occupied 70% or more of the mapping unit, and the unit was named after that soil type, eg. 2Ugd. The second unit used was the compound or complex mapping unit in which the dominant soil type occupied less than 70% of the mapping unit. In this case, the compound mapping unit was named after the two most commonly occurring soil types, the one occupying the greatest area being named first, eg. 2Ugd-2Uge.

Each single delineation of a mapping unit has been termed a unique map area or UMA (after Basinski 1978) and given a number. This UMA number and the UMA name (ie. the soil mapping unit name) were added to the site description file. This allows the necessary linkage between the site description file and the UMA file which contains land suitability data for each UMA (see also Section 4 of this report).

Manning unit	Area	Number	-	Monning	A ==0.0	Number
Mapping unit	(ha)	of		wapping	Alea (ha)	Number
	(IId)	UMAs		unt	(114)	UM As
		011113	-	- , , , , , , , , , , , , , , , , , , ,		UNIAS
2Dba	317.4	22		6Dba	141.7	14
2Dba2	1.5	1		6Dba2	8.5	3
2DbaE	3.4	2		6Dba3	42.9	2
2Dbb	146.3	13		6DbbE	29.1	1
2Dbb2	21.4	1		6Dbe2	23.7	1
2DbbE	10.6	2		6Dbh	11.4	2
2Dbc	2.4	1		6Dda	64.3	6
2Dbc2	17.1	1		6Dda2	30.7	3
2Dbd	51.9	2		6Ddb2	5.2	1
2DbdE	4.8	1		6Dra2	9.0	3
2Dda	248.1	13		6Dya	37.9	2
2Dda2	148.0	5		6Dyb	41.4	9
2Ddb	180.4	6		6Dyb2	21.2	2
2Ddc	10.8	1		6Dyb3	3.1	2
2Dya	398.6	9		6Dyd	2.3	1
2Dya2	16.0	2		6Dye	31.1	4
2DyaE	11.1	1		6Dyf	19.1	4
2Dyb	283.2	20		6Dyf2	8.9	1
2Dyb2	72.0	4		6Dyf3	35.1	1
2SP*	1.3	1		6Dyg	17.3	4
Sub-total	1946.3	108		6Dyg2	44.3	6
2Ugc	6.7	1		6Dyg3	21.6	2
2Ugd	317.9	12		6Dyg4	18.7	2
2Ugd2	36.6	2		6DygE	8.6	1
2UgdE	4.4	2		6Dyj	137.2	12
2Uge	341.8	16		6Dyj2	15.8	1
2Uge2	16.5	2		6Dyj3	1.9	1
2UgeE	1.6	1		6Gna2	5.1	1
2Ugf	8.1	1		6Uca	6.7	1
2Ugg	46.5	4		6Ucb	8.5	2
2Ugh	198.7	13		6Ucb3	2.2	1
2Ugk	321.9	14		6Ucc	4.9	1
2Ugk2	32.8	1		6UgcE	7.9	1
Sub-total	1333.5	69		Total		
Total				Landscape		
Landscape				Unit 6	867.3	98
Unit 2	3279.8	177				
		Total	Area	Mapped	4147.1	

 Table 2. The area and numbers of each mapping unit within Haughton Section - Stage 1, Burdekin River Irrigation Area

2SP* Seasonal or permanent swamps

Variants and Phases

Suffixes

2 Buried soils or D horizons of contrasting or coarser textures underlie the modal soil type at depths less than 1.50 m.

3 Significant variation in depth or field texture of the A horizon to that of the modal soil type.

4 Significant amounts of coarse gravel or cobble within the soil. These coarse fragments are absent from the modal soil type.

E Areas affected by severe erosion.

The area of each mapping unit within Haughton Stage 1 is shown in Table 2. Also shown in this table is the number of UMAs of each soil type whether it occurs as a simple mapping unit or as the dominant soil type within a compound or complex mapping unit.

3.3 Soil morphology and distribution

3.3.1 Introduction

The soil types mapped within each of the landscape units are listed in Table 1, together with a brief description of the major distinguishing attributes of each soil type. A more comprehensive description of each of the soil types can be found in Thompson and Reid (1982) and in McClurg *et al.* (1993). It should be noted that the full range of morphological attributes as listed for each soil type in the two publications above may not necessarily occur within the Haughton Stage 1 area.

3.3.2 Soils of The Alluvial Plains (landscape unit 2)

The Burdekin and Haughton River alluvial plains consist of fine textured sediments deposited during overbank flooding. The sediments have formed a level plain (slopes often less than 0.5 per cent) with very poor surface drainage. This landscape unit occupies some 3280 ha or almost 80 per cent of Haughton Stage 1 (Table 2).

Grey cracking clays (2Ug soils), also known as Barratta clays, occupy 1334 ha of Haughton Stage 1, mainly between Lagoon Creek and Nine Mile Lagoon Creek (see accompanying map). The soil types 2Ugd and 2Uge with lower surface clay content are found in low lying flats and drainage depressions with slopes often less than 0.2 per cent. These two soil types have light to light-medium clay surfaces that either set hard or have weak self mulching characteristics. In contrast, soil types 2Ugg, 2Ugh and 2Ugk usually occur on slightly more elevated flats and have medium to heavy clay surfaces with moderate to strong self mulching characteristics.

Sodic duplex soils (2D soils), also known as Oakey and Dowie soils, comprise the remaining 1946 ha of landscape unit 2 and are particularly widespread between Lagoon and Oaky Creeks. These soils occur at a slightly higher elevation in the landscape than the Barratta clays, and on slopes usually between 0.2 and 0.5 per cent. Oakey and Dowie soils were also found on steeper sloping areas adjacent to creeks, particularly around the margins of the survey area.

The colour of the clayey upper B horizon of the sodic duplex soils varies greatly from grey to brown or dark. All have B horizons of strong consistency and coarse macro-structure. The depth of the A horizon and the depth at which the field pH becomes strongly alkaline (pH > 8.5) are attributes used to separate these soils.

Sodic duplex soil types 2Dba, 2Dya, 2Dda and 2Ddb have the shallowest surfaces being less than 0.12 m in depth and are the predominant soil types within landscape unit 2 (1325 ha). The Oakey soil types 2Dya and 2Dda are strongly alkaline below 0.3 m in depth and particularly widespread in the area between Lagoon and Oaky Creeks. In comparison, the field pH at 0.3 m in both of the Dowie soil types 2Dba and 2Ddb is always in excess of 8.5 which corresponds with strongly sodic characteristics (Donnollan, 1991). Dowie soils occur widely throughout Haughton Stage 1 (503 ha) with the most extensive occurrences adjacent to Haughton Main Channel between Lagoon and Nine Mile Lagoon Creeks. In one unusual occurrence (UMA 72) near the Channel, Dowie soils (2Ddb) were found to be closely associated with linearly distributed uniform sands (soil type 6Ucb) representing buried stream deposits. These relict buried stream deposits were observed to transgress a number of adjacent mapping units throughout Haughton Stage 1, reflecting prior stream paths during periods of higher sea level or more humid climatic regimes.

The Oakey soil types 2Dbb and 2Dyb with deeper surfaces (0.12 - 0.2 m) are also widespread in Haughton Stage 1 (534 ha). These soils occur mainly around the margin of the area along Nine Mile Lagoon and Barratta Creeks. The soil reaction trend for 2Dbb and 2Dyb soil types is similar to the other Oakey soils, 2Dya and 2Dda, described above, in that the pH does not usually reach 8.5 by 0.3 m in depth but will by 0.6 m. Other Oakey soil types, 2Dbc, 2Dbd and 2Ddc, with deeper surfaces (>0.2 m) and less alkaline soil reaction trends occur as only minor soils (87 ha) within the area.

3.3.3 Soils of landscape unit 6

A very wide range of soil types occurs on the levees, flood-outs and fans of the various creeks and prior streams. The greatest occurrence of these alluvial landforms occurs adjacent to HMC due to overbank flooding of Oaky and Nine Mile Lagoon Creeks.

The uniform sands (soil types 6Uca, 6Ucb, 6Ucc), as mapping units, occupy only 22 ha of the survey area (Table 2). However, they also occur as secondary soils within complex mapping units and extensively in thin linear patterns within many units, reflecting prior stream deposits. Such linear patterns are too thin to be mapped at this scale but the most obvious occurrences have been delineated with a broken line on the soils map. Such sandy soils will have an influence on the design and construction of area works and new irrigation farms particularly where they are elevated in the landscape, for example UMA 38 (6Dye-6Ucb).

All of the 6Uc soil types have yellow-brown to brown B horizons, with textures not exceeding sandy loam to light sandy clay loam. The one occurrence of 6Uca (UMA 189) is located adjacent to Oaky Creek and is transgressed by a prior stream leading to a small lagoon to the north. The soil type 6Ucb is distinguished by the presence of a bleached A2 horizon to a depth of 0.6 m and was found to occur on the major prior stream deposits adjacent to HMC.

Another soil type with a very deep sandy A horizon, 6Dya, has been developed on raised flood-out deposits adjacent to HMC as a result of previous overbank flooding of Oaky Creek. This soil type with A horizons extending to 1.2 m over a yellow-brown or yellow-grey clay B horizon, occurred over almost 40 ha.

By far the most extensive soils within landscape unit 6 are sodic duplex soils, extending over 783 ha. Approximately 73 per cent of the soils within this group have A horizon depths less than 0.3 m. These soils with shallow surfaces have brown, yellow-brown, grey or dark clay B horizons to a depth of about 1 m, overlying buried subsoil horizons, often of lighter texture than the B horizon above. Two of the sodic duplex soil types 6Dbh and 6Dyj within this broad group occupy 166 ha and are distinguished by thin surfaces, less than 0.15 m in depth and are very strongly sodic by 0.3 m. This sodicity level is associated with high pH values (≥ 8.5) at 0.3 m.

Other sodic duplex soils with A horizon depths between 0.15 and 0.3 m have more variable pH and sodicity levels at 0.3 m. Soil types with these characteristics are 6Dba, 6Dyg, 6Dda and 6Ddb and were found mainly on flood-out deposits adjacent to HMC, mainly in the south of the area. Collectively, these four soil types total some 404 ha.

The remaining sodic duplex soils of this landscape unit cover 213 ha; they have deeper surfaces (to 0.6 m in depth) and are not strongly alkaline or sodic (ESP > 6) in the upper 0.9 m of the profile. These soils (6Dbb, 6Dbe, 6Dyb, 6Dye and 6Dyf) have brown, yellow-brown to grey B horizons to about 1.2 m over buried subsoil horizons, often of lighter texture than the B horizon above.

Limited occurrences of the non-sodic duplex soil types 6Dra, 6Dyd and 6Gna make up the remaining 24 ha of landscape unit 6.

3.4 Chemical and physical characteristics

Following the field survey, representative soil profiles from 11 soil types were sampled for laboratory analysis. These sampled soils represent the most extensive soils, in particular, the sodic duplex soils which occupy 66 per cent or 2730 ha of Haughton Stage 1. The morphological and analytical data for the representative soil profiles are listed in Appendix II.

Profiles were sampled at 0 to 0.1 m, 0.1 to 0.2 m, 0.2 to 0.3 m, 0.5 to 0.6 m, 0.8 to 0.9 m, 1.1 to 1.2 m and 1.4 to 1.5 m unless a soil horizon boundary occurred within any particular sampling interval. Eight to ten surface samples (0 to 0.1 m) were also taken from each site and bulked for particular plant nutrient analyses. Analytical methods used and the principles followed in the interpretation of the results are outlined in Bruce and Rayment (1982) and Baker (1991).

In addition to the representative soil profiles, a further 23 sites were sampled mainly to further investigate soil salinity and sodicity levels in the sodic duplex soils. As these additional soil profiles were fully analysed, the results have been incorporated in the discussion of soil chemical and physical characteristics which follows. A list of the soil types and UMA's sampled is given in Table 3 and their location is shown in Figure 4.

Soil type	Representative sample site number	Survey mapping site number	UMA number	Soil type	Representative sample site number	Survey mapping site number	UMA number
Sodic duple	x soils of landsca	pe unit 2		Sodic du	plex soils of lands	cape unit 6	
2Dda		HTS 195	30	6Dba	S 6		29
2Dda		HTS 204	40	6Dba		HTS 190	39
2Dda		HTS 209	30	6Dba		HTS 327	63
2Dda		HTS 402	30	6Dba		HTS 352	63
2Dda	S4		185	6Dda	S 7		69
2Dda		HTS 608	225	6Dda		HTS 328	69
2Dya	S5		134	6Dda		HTS 371	60
2Dya		HTS 596	222	6Dyb		HTS 571	234
2Dya		HTS 660	225	6Dye	S8		38
2Dyb		HTS 98	1	6Dyg2	S9		39
				6Dyg		HTS 153	29
				6Dyg		HTS 397	33
				6Dyg		HTS 399	32
Cracking clays of landscape unit 2		6Dyg		HTS 460	173		
_				6Dyj2	S10		33
2Ugd (m)	S1A		11	6Dyj		HTS 372	59
2Ugd (d)	S1B			6Dyj	S11		33
2Uge (m)	S2A		122	6Dyj		HTS 389	33
2Uge (d)	S2B			6Dyj		HTS 392	33
2Ugk (m)	S3A		13	6Dyj		HTS 393	33
2Ugk (d)	S3B			6Dyj		HTS 470	163

 Table 3. Soil types sampled within Haughton Section - Stage 1, Burdekin River

 Irrigation Area

It can be seen from Table 3 and Figure 4 that emphasis was placed on sampling of the sodic duplex soils in the south west of the area, particularly in the vicinity of HMC. Some of the larger UMA's in this area have been multiple sampled to provide an understanding of the spatial variation in sodicity and salinity characteristics.

3.4.1 Fertility of surface soils

Very low to low levels of extractable phosphorus and low levels of organic carbon and total nitrogen were found in all three Barratta clay sites sampled (Table 4, Appendix 2). For the same soils, extractable potassium levels were medium to high, extractable copper

Figure 4. Location of representative and additional soil sampling sites, Haughton Section – Stage 1, Nine Mile Lagoon to Oaky Creek, Burdekin River Irrigation Area.
28.

levels medium and extractable zinc levels very low to low on mounds and medium in the surface of depressions. The above data agree with the range of values for representative profiles of the same soil types elsewhere in the BRIA (Donnollan 1991).

Soil type	Acid P (ppm)	Bicarb. P (ppm)	Extr. K (meq/100g)	Extr. Cu (ppm)	Extr. Zn (ppm)	Org. C (%)	Tot. N (%)
Sodic duplex soils of	f landscape u	nit 2					
2Dda(6)*							
Mean	6	4	0.38	0.8	0.5	1.1	0.06
Minimum	4	2	0.22	0.4	0.3	0.7	0.04
Maximum	7	5	0.64	1.1	0.8	1.6	0.09
2Dya(3), 2Dyb(1)							
Mean	4	3	0.22	1.2	0.3	0.8	0.06
Minimum	2	1	0.13	0.8	0.2	0.4	0.03
Maximum	5	5	0.34	1.6	0.4	1.1	0.08
Overall mean	5	4	0.31	0.9	0.4	1.0	0.06
Cracking clay soils of 2Ugd(1), 2Uge(1), 2Uge(o f landscape Ugk(1)	unit 2					
Mean	9	9	0.47	1.6	0.8	1.2	0.09
Minimum	5	4	0.36	1.1	0.3	0.8	0.06
Maximum	23	18	0.65	2.3	1.8	1.6	0.12
Sodic duplex soils of	f landscape u	ınit 6					
6Dba(4)	C	5	0.27	0.2	0.2	0.6	0.03
Mean	0	3	0.27	0.3	0.2	0.0	0.03
Minimum	4	3	0.12	0.2	0.1	0.3	0.02
Maximum	/	/	0.43	0.5	0.5	0.9	0.05
oDda(3)	7	4	0.20	07	0.3	1.0	0.06
Mean	/	4	0.30	0.7	0.3	1.0	0.00
Minimum	4	3	0.21	0.0	0.3	0.8	0.05
Maximum	11	/	0.38	0.8	0.4	1.1	0.00
oDyg(5)	0	6	0.22	0.5	0.3	0.6	0.04
Mean	0 5	0	0.23	0.5	0.5	0.0	0.04
Maninum	17	12	0.14	0.2	0.2	0.4	0.02
	17	15	0.57	0.7	0.5	0.9	0.00
Maan	12	11	0.35	0.5	0.4	0.8	0.05
Mean	15	11	0.55	0.3	0.4	0.5	0.03
Munimum	20	25	0.17	0.5	0.2	13	0.05
	29	25	0.00	0.7	0.7	1.5	0.07
Overall Mean	9	/	0.29	0.5	0.3	0.7	0.05
Weakly sodic duples	x soils of lan	dscape unit 6					
6Dyb(1)	3	5	0.16	0.3	0.2	0.4	0.02
6Dye(1)	5	3	0.22	0.2	0.4	0.5	0.03

Table 4.	Fertility characteristics for surface soils (0-0.1 m) sampled within Haughton
	Section - Stage 1, Burdekin River Irrigation Area

(6)* refers to the number of analytical values available for each soil type or group of soil types.

29.

The surface fertility status of all sodic duplex soils analysed is low and below that found for the three Barratta clay soils (Table 4, Appendix 2). In general, the origin of the sodic duplex soils ie. whether the soil occurred in landscape unit 2 or 6 made little difference to surface fertility characteristics with the exception that some soils of landscape unit 6 had slightly lower levels of extractable potassium, organic carbon and total nitrogen when compared to those of landscape unit 2. This is mainly a result of coarser surface textures in some of the landscape unit 6 soils, particularly in the case of 6Dyb and 6Dye and to some extent 6Dba.

When considering all sodic duplex soils together, extractable phosphorus levels were very low to low, as were organic carbon and total nitrogen levels. For the same soils, extractable potassium, copper and zinc were low to medium. Surface fertility data for this group of soils agrees with the range of values for representative profiles of the same soil types elsewhere in the BRIA (Donnollan 1991).

3.4.2 Total phosphorus, potassium and sulphur

All soils sampled from within landscape unit 2 mapping units had similar low levels of total sulphur, values decreasing from a mean of 0.016 per cent in the surface 0.1 m to 0.011 per cent by 1.2 m.

The Barratta clay (2Ug) soils, however, were a little better supplied with total phosphorus and potassium than the sodic duplex Oakey (2D) soils. The mean total phosphorus level for the 0.1 m depth of the Barratta clays was 0.022 per cent compared to the mean of 0.017 per cent in the same depth of the Oakey soils. Total phosphorus in the Oakey soils remained fairly constant with depth while levels decreased in the Barratta clays to 0.015 per cent by 1.2 m. All of the above values are nevertheless regarded as low, with the exception of some slightly higher total phosphorus levels in samples taken from depressions of the Barratta clay soils (mean value of 0.024 per cent at 0.1 m).

Total potassium values in the landscape unit 2 soils increased with depth. Mean values for the sodic duplex (2D) soils ranged from 0.84 per cent at 0.1 m to 1.17 per cent at 1.2 m and 1.1 to 1.44 per cent respectively for the same depths of the Barratta clay soils. These values represent medium to high levels of total potassium.

The sodic duplex soils of landscape unit 6 have even higher total potassium levels, increasing from 1.25 per cent at 0.1 m to 1.55 per cent at 1.2 m. However, total phosphorus and sulphur levels for these soils are the lowest of all soils sampled, averaging 0.015 per cent total phosphorus and 0.01 per cent total sulphur at 0.1 m. These values differ little with depth.

3.4.3 Cation exchange capacity and exchangeable cations

Cation exchange capacity (CEC) and exchangeable cation status are important characteristics of soils as these attributes have a major influence on plant nutrient status and uptake and can influence soil physical properties such as plant available water capacity, uptake of soil water and dispersion.

30.

Mean clay content and cation exchange data for selected depths of the soils of both landscape unit 2 and 6 are given in Tables 5 and 6 respectively. It should be noted that the clay contents at 1.1 to 1.2 m of several profiles within soil types 2Dda and 6Dda are lower than in the main B horizon above at 0.5 to 0.6 m. This has resulted in lower mean clay contents, cation exchange capacity and exchangeable cations at 1.1 to 1.2 m than at 0.5 to 0.6 m.

Soil type and depth (m)	Clay (%)	CEC** (meq/100g)	Ех	cchangea	ble cation	ns**	Exch Ca:Mg	CEC:Clay
			Ca	Mg	Na	K		
				(meq	/100g)			
Sodic duplex so	oils of lar	ndscape unit 2						
2Dda(6)*								
0.0-0.1	22	12.5	3.3	3.8	0.9	0.33	0.91	0.56
0.5-0.6	42	24.0	9.1	9.3	7.8	0.14	0.98	0.56
1.1-1.2	32	18.1	6.4	0.94	0.57			
2Dya(3), 2Dyb(1)							
0.0-0.1	32	19.9	3.8	7.3	1.4	0.27	0.52	0.52
0.5-0.6	51	28.1	8.9	12.0	9.1	0.19	0.75	0.56
1.1-1.2	51	28.2	8.0	11.8	9.8	0.28	0.69	0.56
Cracking clay s	soils of la	undscape unit 2	2					
2Ug soils (3)								
Mound								
0.0-0.1	48	25.1	9.8	8.2	0.8	0.53	1.15	0.51
0.5-0.6	62	34.3	13.8	14.5	3.8	0.36	0.97	0.56
1.1-1.2	57	31.8	12.6	14.5	6.0	0.29	0.88	0.56
Depression								
0.0-0.1	40	22.7	6.6	4.8	0.5	0.52	1.44	0.56
0.5-0.6	48	25.0	9.2	8.0	3.2	0.18	1.20	0.52
1.1-1.2	53	29.6	12.5	12.1	5.5	0.23	1.04	0.56

Table 5.	Mean clay content and cation exchange data for soils of landscape unit 2
	sampled within Haughton Section - Stage 1, Burdekin River Irrigation Area

(6)* refers to the number of analytical values available for each soil type or group of soil types. ** CEC and exchangeable cations determined at pH 8.5 after ethanol leaching.

Soil type and depth (m)	Clay (%)	CEC** (meq/100g)	Exc	changeal	ole cation	IS**	Exch Ca:Mg	CEC:Clay
			Ca	Mg	Na	К		
				(meq	/100g)			
6Dba(4)*								
0.0-0.1	15	6.1	1.3	1.4	0.2	0.3	0.98	0.41
0.5-0.6	37	14.9	3.2	5.4	7.4	0.1	0.72	0.41
1.1-1.2	34	15.8	3.9	5.7	8.9	0.2	0.69	0.48
6Dda(3)								
0.0-0.1	24	11.2	2.5	2.7	0.3	0.3	0.95	0.47
0.5-0.6	38	19.9	8.1	7.4	6.5	0.1	1.08	0.54
1.1-1.2	28	16.3	5.9	5.6	6.2	0.1	1.02	0.59
6Dyg(5)								
0.0-0.1	13	6.2	1.2	1.5	0.3	0.3	0.87	0.47
0.5-0.6	32	15.2	3.4	5.3	7.8	0.1	0.65	0.48
1.1-1.2	39	21.2	4.6	7.5	12.1	0.2	0.46	0.56
6Dyj(7)								
0.0-0.1	19	8.8	2.2	2.2	0.4	0.4	0.98	0.47
0.5-0.6	32	16.6	4.5	5.0	8.8	0.1	0.88	0.51
1.1-1.2	34	18.2	4.1	5.5	11.6	0.2	0.77	0.54
6Dyb(1)								
0.0-0.1	7	4.0	1.4	0.9	0.1	0.2	1.55	0.57
0.5-0.6	45	12.3	3.8	3.8	1.0	0.1	1.00	0.27
1.1-1.2	29	11.2	4.3	4.5	1.6	0.1	0.96	0.38
6Dye(1)								
0.0-0.1	5	4.1	1.2	0.6	0.02	0.3	2.00	0.81
0.5-0.6	50	17.5	6.2	4.5	1.00	0.3	1.36	0.35
1.1-1.2	36	16.4	8.4	5.7	2.00	0.3	1.46	0.45

 Table 6.
 Mean clay content and cation exchange data for sodic duplex soils of landscape unit 6 sampled within Haughton Section - Stage 1, Burdekin River Irrigation Area

(4)* refers to the number of analytical values available for each soil type or group of soil types. ** CEC and exchangeable cations determined at pH 8.5 after ethanol leaching.

When comparing all soils analysed, mounds of the Barratta clay (2Ug) soils have the highest cation exchange and exchangeable cation status, reflecting higher clay contents at all three selected depths. Soils analysed from the 2Ug cracking clay depressions have lower clay contents and cation exchange capacity status compared to the mound profiles but similar to subsoils of the sodic duplex Oakey soil types (2Dya and 2Dyb). However, the proportion of exchangeable cations varies considerably between the Barratta and Oakey soil types, with much higher exchangeable sodium in the 0.5 to 0.6 and 1.1 to 1.2 m depths in the latter soils. Exchangeable calcium is highest in the 2Ug mound profiles with exchangeable magnesium and calcium present in approximately equal amounts, as they are also for the 2Ug depression profiles, 2Dda and 6Dda soil types. In the case of the soil types 2Dya, 2Dyb, 6Dba, 6Dyg and 6Dyj, exchangeable magnesium exceeds exchangeable calcium levels, particularly in the subsoil depths. Such high exchangeable magnesium levels may contribute together with the high exchangeable sodium status to cause the subsoil of many of these soil types to disperse readily when wet.

The soil types 6Dyb and 6Dye are quite different to the other sodic duplex soils of landscape unit 6 in that they both have deep sandy A horizons, hence the very low surface clay contents and low exchangeable cation status. The Ca:Mg ratio for these two soil types (6Dyb and 6Dye) is greater than 1.0 for all selected depths. These soils are typical of the raised prior streams of the area and have formed on older alluvial deposits when compared to adjacent flood-outs and fans predominated by the soil types 6Dba, 6Dyg and 6Dyj.

Clay content, cation exchange capacity and exchangeable calcium and magnesium levels throughout all selected depths of the sodic duplex soils 6Dba, 6Dda, 6Dyg and 6Dyj are considerably lower than levels found in the sodic duplex soils of landscape unit 2 (2Dda, 2Dya, 2Dyb). In fact exchangeable calcium and magnesium levels in the surface of all sodic duplex soils of landscape unit 6 are below those recommended as sufficient for plant uptake (Baker 1991).

Exchangeable potassium levels are highest in all three selected depths of the Barratta (2Ug) cracking clays. Surface exchangeable potassium levels in all other soils analysed are also sufficient ie. having over 0.2 meq per 100 g (Baker 1991) although levels often decrease below 0.2 meq per 100g at depth.

The exchangeable sodium status of these soils will be discussed in detail in the next section. One important difference between the soils of the two landscape units is the proportion of exchangeable sodium in the subsoils of the strongly sodic duplex soils. In the Oakey (2D) soils, exchangeable sodium levels increase markedly with depth, however magnesium remains the predominant cation. In contrast, the sodic duplex soils of landscape unit 6 (6Dba, 6Dda, 6Dyg and 6Dyj) have a higher proportion of exchangeable sodium, with sodium dominating the clay exchange in the subsoil in most instances.

The ratio of cation exchange capacity to clay content, also known as the clay activity ratio can be used to indicate the predominant clay mineral present. For the landscape unit 2 soils, the clay activity ratio is quite constant at around 0.55, irrespective of profile morphology. This value indicates the soils have a mixture of non-expanding and expanding clay minerals ie. a mixture of kaolinite, illite and montmorillonite. This agrees with Coughlan (1979) who found by X-ray diffraction that the $<2 \mu m$ fraction of a Barratta (2Ug) clay soil, which had a clay activity ratio of 0.62, contained a mixture of poorly crystalline montmorillonite, kaolinite, quartz, illite and interstratified kaolinmontmorillonite.

Most selected depths for the sodic duplex soils of landscape unit 6 had clay activity ratios of between 0.4 and 0.5 which indicates a higher proportion of non-expanding clay minerals when compared to the landscape unit 2 soils.

The predominance of non-expanding clay minerals in many of the soils analysed from Haughton Stage 1 will result in a reduced plant available water capacity (PAWC) and a need to irrigate more frequently. Estimates of effective rooting depth and PAWC for the soil types sampled within Haughton Stage I are summarised in Donnollan (1991). Rooting depth is estimated to be between 0.4 and 0.6 m for the strongly sodic duplex soils (2Dda, 2Dya, 2Dyb, 6Dba, 6Dda, 6Dyg and 6Dyj) and 0.9 m for the weakly sodic duplex soils (6Dyb and 6Dye) and the Barratta clay (2Ug) soils. PAWC was estimated as 69 to 95 mm for the strongly sodic duplex soils, 114 mm for the weakly sodic duplex soils and 130 mm for the cracking clays.

3.4.4 Soil pH, sodicity and salinity

Soil pH provides a measure of the degree of acidity or alkalinity of the soil solution which has a major influence on plant nutrient availability. High soil pH may also indicate high levels of exchangeable sodium in the soils of this area (Baker *et al.*).

Soil pH profiles for all analysed soils are shown in Figures 5 and 6. With the exception of the mound profile of the Barratta clay 2Uge (Figure 5d), all soils had surface pH values between 5.5 and 6.7. The soloth soil type 6Dyb remained non-alkaline throughout the profile (Figure 5a), whereas the weakly sodic soil type 6Dye became moderately alkaline by a depth of 1.2 m.

Soil reaction trend within the Barratta (2Ug) clay soils was extremely variable, depending on the soil type and whether the site was sampled from the mound or depression position (Figure 5d). Subsoil pH values by a depth of 1.5 m varied from 7.7 for the 2Ugd depression profile to 8.8 for the 2Ugk mound.

Soil pH increased with depth most markedly in the strongly sodic duplex soil type 6Dyj (Figure 6a) where pH exceeded 8.5 by a depth of 0.3 m in all but one of the sampled profiles. Soil pH at 0.3 m in all other sodic duplex soils was quite variable (Figures 5b, c; 6b, c, d) with many values exceeding pH 8.0. Some sampled soil profiles classified in the field as soil types 2Dda, 2Dyb, 6Dyg, 6Dba and 6Dda had laboratory pH values in excess of 8.5 at 0.3 m in depth and as such have atypical soil reaction trends (Donnollan, 1991).

By a depth of 1.5 m, all sodic duplex soils with the exception of 6Dyb (Figure 5a) have pH values in excess of 8.0 which agrees with general soil reaction trends for the same soil types throughout the BRIA (Donnollan 1991).

Figure 5. Soil pH profiles for (a) weakly sodic duplex soils of landscape unit 6 and (b,c,d) all soils of landscape unit 2, Haughton Section - Stage 1, Burdekin River Irrigation Area. A and B profiles for the Barratta (2Ug) clay soils indicate mound and depression sites respectively.

Figure 6. Soil pH profiles for strongly sodic duplex soils of landscape unit 6, Haughton Section - Stage 1, Burdekin River Irrigation Area.

There is a close relationship between soil pH and exchangeable sodium percentage (ESP)*, particularly for the sodic duplex soils of the BRIA (Baker et al. 1983), and this relationship is heavily relied upon in the assessment of land suitability. ESP profiles for all analysed soils are shown in Figures 7 and 8.

Extremely high ESP values (mean of 41.6 per cent) were found by a depth of 0.3 m in the strongly sodic duplex soil type 6Dyj (Figure 8a). ESP values for this soil type sampled from within Haughton Stage 1 are much higher than expected from the mean ESP profile for similar strongly sodic duplex soils throughout the BRIA (Donnollan 1991). At a depth of 1.5 m, mean ESP for the sampled 6Dyj profiles reached 65 per cent.

Many of the other sodic duplex soil types (2Dda, 2Dya, 2Dyb, 6Dyg and 6Dba) have ESP values at a depth of 0.3 m and below (Figure 7 and 8), considerably higher than expected from the mean ESP profile for similar sodic duplex soils throughout the BRIA (Donnollan 1991). This is particularly the case for most of the 6Dyg and 6Dba profiles analysed (Figure 8 b, c) and such high ESP values are not always indicated by field or laboratory determined pH. This causes some concern in the assessment of land suitability as ESP cannot be determined in the laboratory for all sodic duplex soil mapping units. Given the number of sodic duplex soils sampled from Haughton Stage 1 with an ESP greater than 25 at 0.3 m depth, the potential of this area for irrigated sugar cane and field crops with the exception of rice must be questioned even though substantial areas have been rated as suitable (usually class 3).

This phenomenon of higher than expected exchangeable sodium within the soils of Haughton Stage 1 may be associated with its close proximity to areas of weathering granite rich in sodium felspars in the catchment of Oaky Creek and its tributaries. All of the strongly sodic duplex soils of this area will have a tendency to disperse strongly when wet, as indicated by dispersion ratio (R1) values of 0.89 to 1.0 by a depth of 0.5 to 0.6 m and high ESP. These soils will become even more dispersive if soluble salts are leached from the soil profile.

ESP profiles for the weakly sodic duplex soil types 6Dye and 6Dyb (Figure 7a) are similar to that reported in Donnollan (1991) where subsoils do not become sodic (ESP 6 to 15) until a depth of 0.9 m.

For the three Barratta (2Ug) cracking clay soils analysed, 2Ugd and 2Ugk profiles were sodic (ESP 6 to 15) by 0.6 m and strongly sodic (ESP \geq 15) by 0.9 m (Figure 7d); as expected from similar soils elsewhere in the BRIA (Donnollan 1991). However, both mound and depression 2Uge profiles had atypically much higher ESP values at 0.3 m and below, with this soil becoming strongly sodic by a depth of 0.6 m. All of the clay soils analysed from this area will have a tendency to disperse strongly when wet, as indicated by dispersion ratio (R1) values of 0.89 to 0.99 by a depth of 0.5 to 0.6 m and significant exchangeable sodium present at that depth. If soluble salts are leached from these soils, they will tend to become even more dispersive.

* ESP = Exchangeable Na/CEC x 100 where CEC = cation exchange capacity.

Figure 7. ESP profiles for (a) weakly sodic duplex soils of landscape unit 6 and (b,c,d) all soils of landscape unit 2, Haughton Section - Stage 1, Burdekin River Irrigation Area. A and B profiles for the Barratta (2Ug) clay soils indicate mound and depression sites respectively.

Figure 8. ESP profiles for strongly sodic duplex soils of landscape unit 6, Haughton Section - Stage 1, Burdekin River Irrigation Area.

Electrical conductivity (EC) profiles for all sampled soils are shown in Figures 9 and 10. Profiles of the strongly sodic duplex soil type 6Dyj (Figure 10a) had the highest soluble salt levels of all soils analysed. Most 6Dyj soil profiles had medium to high EC by a depth of 0.6 m, with two profiles having high EC at 0.3 m. The maximum salt bulge at 0.6 to 0.9 m for these soils confirms an effective rooting depth of less than 0.6 m.

Maximum soluble salt levels in other sodic duplex soil types, 2Dda, 2Dya, 6Dyg, 6Dba and 6Dda (Figures 9b, c and 10 b, c, and d respectively) reached medium by 0.6 m, confirming an effective rooting depth of less than 0.6 m. EC values in most profiles of these soil types decreased below a depth of 0.9 m.

Soluble salt levels in the weakly sodic duplex soil types 6Dye and 6Dyb (Figure 9a) are very low to low in the upper 1.2 m of the profile. This result conforms with the mean EC (1:5) profile reported for similar soils elsewhere in the BRIA (Donnollan 1991). From the EC profiles for the 6Dye and 6Dyb soils analysed, there should be no restriction to plant roots within the upper 1.2 m.

EC values for the Barratta clay (2Ug) soils from Haughton Stage 1 (Figure 9d) were all medium below a depth of 0.9 m which confirms this as the effective rooting depth. Soluble salt levels decreased little between 0.9 and 1.5 m.

Figure 9. Electrical conductivity profiles for (a) weakly sodic duplex soils of landscape unit 6 and (b,c,d) all soils of landscape unit 2, Haughton Section - Stage 1, Burdekin River Irrigation Area. A and B profiles for the Barratta (2Ug) clay soils indicate mound and depression sites respectively.

Figure 10. Electrical conductivity profiles for strongly sodic duplex soils of landscape unit 6, Haughton Section - Stage 1, Burdekin River Irrigation Area.

4. LAND EVALUATION

4.1 Current land use

At the time of the survey (1987-88), the area comprising Haughton Section - Stage 1 was being used for beef cattle grazing on native pastures. No tree clearing or poisoning had taken place. The area was made up of "Camerons" (Lot 2, Barratta) south of Oaky Creek, now resumed by the Water Resources Commission, part of "Barratta Gully" (Lot 3, Barratta) and part of the stock route and adjacent Camping Reserve No. 34. The location of these holdings can be seen in Figure 2.

4.2 Method of assessing land suitability

Land suitability assessment provides an estimate of the potential of land for a particular form of land use. In Queensland, land is assessed on the basis of five land suitability classes with suitability decreasing from class 1 to 5 (Land Resources Branch staff, 1990). A short definition of the classes is as follows:

- Class 1 Suitable land with negligible limitations;
- Class 2 Suitable land with minor limitations;
- Class 3 Suitable land with moderate limitations;
- Class 4 Marginal land presently unsuitable; and
- Class 5 Unsuitable land.

More detailed definitions of each of the suitability classes is given in Appendix III.

Land resource information gathered during soil surveys, as well as the results of laboratory analyses on selected soil profiles, are used in assessing land suitability. In Haughton Section - Stage 1, as in other areas in the BRIA, the suitability of each individual mapping unit or unique map area (UMA) was assessed as to its suitability for a range of furrow-irrigated crops, including sugar-cane; flood irrigation of rice, and low volume irrigation of two selected tree crops.

Each of the three irrigation methods considered requires a different land suitability classification system (Donnollan and Day 1986). These classification systems were developed by first determining the land use requirements for each particular crop - irrigation method being assessed. Soil and land characteristics which cause land to have less than optimum conditions for a particular crop - irrigation method were recognised as limitations. Local soil and land attributes that will provide a measure or an estimate of the effects of each limitation were then selected and ranked as subclasses in terms of the increasing degree of severity imposed by each limitation on that irrigated land use.

The limitations were grouped into four categories depending on their effects as follows:

- . Crop productivity limitations nutrients, salinity, sodicity; and for tree crops, soil depth;
- . Water management limitations water availability, excessive permeability, soil complexity, internal drainage; and for rice, deep drainage;
- . Land surface management limitations rockiness, slope, microrelief, surface condition and wetness; and
 - Degradation limitations erosion and salinity outflow potential.

Details of limitation subclasses and the framework of each of the land suitability classification systems are given in Appendices IV, V and VI and are discussed more fully by McClurg (in press). When assessing the suitability of each UMA, the highest limitation subclass assigned usually determined the overall land suitability class. However, for UMA's which had two or more limitation subclasses with the same ranking, consideration was given to downgrading the overall land suitability class further, particularly if there were any interactions between these limitations.

Land was assessed for the following crop-irrigation methods:

using furrow irrigation	- sugar-cane, soybeans, sorghum, maize, kenaf,
	sunflowers, cotton, legume seed crops (such as mungbean, chickpeas, pidgeon peas and dolichos), beans, capsicums, eggfruit, tomatoes, cucumbers, rockmelons, squash and zucchini;
using flood irrigation (paddy)	- rice; and

using low volume irrigation - mangoes and avocadoes.

4.3 Results of the land suitability assessment

Access to the land suitability data base for all 19 crops is available through the Ayr office of the Department; but for immediate planning purposes the assessment for five of the most commonly grown crops are discussed here. These crops are sugar-cane, maize, rice, capsicums and mangoes. A summary of the suitability of the land for these five crops is given in Table 7 and is illustrated on the accompanying map.

Land	Area of land (ha) assessed within each land suitability class														
Class	Sugar-cane	Maize	Rice	Capsicums	Mangoes										
1	-	-	-	-	_										
2	533	16	416	16	17										
3	2414	2254	1690	94	123										
Total Suitable	2947	2270	2106	110	140										
4	1069	1746	1392	3906	3895										
5	131	131	649	131	112										

Table 7. The suitability of Haughton Section - Stage 1, Burdekin River Irrigation Area, for five crops produced under furrow irrigation (sugar-cane, maize and capsicums), flood irrigation of rice and low volume irrigation of mangoes

For each UMA, the complete land suitability assessment for the five main crops, including individual limitation subclasses, is given in Appendix VII (sugar-cane, maize and rice) and VIII (capsicums and mangoes).

Sugar-cane. Based on the summary in Table 7, it would appear that sugar-cane is the most appropriate crop for Haughton Stage 1, with 2947 ha or 71 per cent of the area assessed as suitable. Sodicity, soil distribution complexity and occasionally plant water availability are the most restrictive of all limitations, causing land to be rated as marginal (class 4) for sugar-cane. However, based on the chemical analysis of the sodic duplex soils of the area, sodicity may in fact be a more severe limitation than indicated by the current method of assessment. This conclusion has been discussed fully in Section 3.4.4. Given that 2780 ha or 66 per cent of Haughton Stage 1 is comprised of sodic duplex soils, the potential of this area for irrigated sugar-cane must be questioned as higher inputs such as gypsum application will always be required to achieve acceptable yields. The area is also remote from existing tramlines and the provision of such infrastructure will be very expensive.

Maize. The area assessed as suitable for maize production (2270 ha or 55 per cent) is considerably less than for sugar-cane due in part to the greater sensitivity of maize to excessive sodicity and adverse soil surface conditions. This estimate of the area suitable for maize will be further reduced if the sodicity limitation is as severe as soil analyses indicate. However, the potential of Haughton Stage 1 for the irrigated production of a more sodium tolerant row crop such as cotton is considerably higher (2830 ha or 68 per cent suitable), at least on the current system of assessment.

Rice. Soil distribution complexity, excessive deep drainage, sodicity and occasionally slope or gradient are the main limitations which reduce the area of Haughton Stage 1 suitable for rice to 2106 ha or 51 per cent. This result does indicate the somewhat restricted potential of the area for rice production. However, if the sodicity

limitation is actually more severe than the assessment indicates, the additional inputs such as higher fertiliser rates to achieve an acceptable yield will not be as expensive as the inputs required to grow crops such as sugar-cane and maize in this area.

Capsicums and Mangoes. Very little area of Haughton Stage 1 has been rated as suitable for the furrow irrigation of capsicums or low volume irrigation of mangoes. The most restrictive limitations for capsicums are soil permeability, adverse soil surface conditions and excessive sodicity. The effect of these limitations can be reduced to some extent by growing such horticultural crops on beds under plastic mulch and using trickle irrigation. However, the strongly sodic and very shallow surfaced sodic duplex soil types 2Dba, 2Dda, 2Ddb and 2Dya should still be regarded as unsuitable irrespective of the irrigation technique employed.

Surface wetness, excessive sodicity and salinity and restricted internal drainage are the main limitations which result in most of Haughton Stage 1 being rated as unsuitable for the low volume irrigation of mangoes.

4.4 Management considerations

Most of the soils of Haughton Stage 1 fall within two of the broad soil groups defined by Donnollan (1991). These are the cracking clays and the sodic duplex soils. Donnollan further subdivided each of these broad soil groups into a number of subgroups, as their characteristics and associated landform features require the adoption of specific management strategies for successful irrigated crop production.

A more comprehensive discussion of limitations to irrigated land use and management options appropriate to each of the soil subgroups is provided in Donnollan (1991). A summary of this information as it relates to the soils of Haughton Stage 1 is provided below.

4.4.1 Group 1. Cracking clays

These soils comprise the Barratta clays of subgroup 1A (2Ugc, d and e) and subgroup 1B (2Ugf, g, h and k). Collectively the Barratta clays occupy 1334 ha of Haughton Stage 1.

The most commonly assigned land suitability classes for the Barratta clays are class 2 or 3 for sugar-cane; class 3 for maize; class 2 or 3 for rice and class 4 for capsicums and for mangoes. Appendices VII and VIII provide the land suitability classes assigned to each particular area or UMA.

Barratta clays are generally suitable for furrow irrigation of sugar-cane and a range of row crops due mainly to high plant available water capacity, gentle slopes and low soluble salt levels to at least 0.6 m. Generally they are suitable for rice due to restricted internal drainage and gentle slopes. However, they are unsuitable for furrow irrigation of horticultural crops due to slow permeability within the root zone and are

unsuitable for low volume irrigation of mangoes due to restricted internal drainage and excessive wetness.

As these soils occur on slopes less than 0.2 percent and have gilgai up to 0.3 m vertical interval in their natural state, precision levelling will be required to provide adequate surface drainage. After the first crop, a light brushing may be required to compensate for differential settling of fill in the gilgai depressions. It is also important that low spots, sufficiently deep to hold water after flushing, are not present in rice bays to attract geese with subsequent puddling and loss of production.

Shorter furrow lengths (less than 600 m) are suggested for sugar-cane and row crops where the land slope is 0.1 per cent or less to improve irrigation efficiency and avoid waterlogging. More frequent, high volume irrigation over a short duration will also improve irrigation efficiency as water entry becomes very slow after surface cracks close.

Wet season trafficability is a major problem on the Barratta clays. Implementation of a controlled traffic - permanent bed system will increase the period when cultural operations can be undertaken successfully. Such operations should not be undertaken until the soil moisture content is nearing the lower plastic limit to avoid excessively cloddy seed beds.

Satisfactory germination and establishment of crops including sugar-cane can be achieved on Barratta clays by planting dry on furrow crests at a shallow depth and then wetting them slowly.

4.4.2 Group 2. Sodic duplex soils

These soils exhibit a very distinct change in texture from either a sandy or loamy surface (A) horizon to a dense sodic clay subsoil (B horizon). All of the soils of this group are sodic (ESP>6) in some part of the subsoil and have been divided into three very distinctive subgroups depending on the depth of the surface (A) horizon, the level of sodicity and at what depth subsoils become sodic (Donnollan, 1991). These soil characteristics will require the use of specific management techniques for successful irrigated crop production.

The strongly sodic duplex soils 2Dba, 2Ddb, 6Dbh and 6Dyj make up **subgroup** 2A. These soils occupy 670 ha of Haughton Stage 1. Characteristics of these soils include thin surface (A) horizons (less than 0.15 m), and subsoils that become strongly alkaline (pH 7.9 to 9.0) and strongly sodic (ESP>15) by 0.3 m. In this area, analysed soil profiles demonstrate extremely high ESP levels in excess of 25 at 0.3 m (see Section 3.4.4). Because of the influence of these characteristics on plant available water capacity, plant nutrition and general soil physical conditions, sodic duplex soils of subgroup 2A have been assessed as class 4 for all crops, i.e. as marginal land, currently unsuitable. Research is currently being undertaken by the Bureau of Sugar Experiment Stations on the amelioration of such sodic duplex soils. Management practices being investigated include the application of gypsum in solid form and via irrigation water, deep ripping, improved subsoil drainage and more appropriate irrigation methods.

Sodic duplex soils with a slightly deeper surface (A) horizon and subsoils that become strongly alkaline (pH>7.9) and strongly sodic (ESP>15) by 0.6 m make up **subgroup 2B**. Soil types that comprise this subgroup are 2Dbb, 2Dbd, 2Dya, 2Dyb, 2Dda and 2Ddc, totalling 1423 ha of the Burdekin and Haughton River alluvial plain; and 6Dba, 6Dda, 6Ddb and 6Dyg, totalling 404 ha of relict alluvial landforms such as flood-outs and fans.

The sodicity levels in most of these soil types are higher than expected when compared with soil profiles analysed from other areas of the BRIA and this has had a major influence on the assessment of land suitability. The most commonly assigned land suitability classes for sodic duplex soils of subgroup 2B in this area are class 3 or 4 for sugar-cane and maize, and class 4 for furrow irrigation of capsicums and low volume irrigation of mangoes. In most instances, sodic duplex soils of landscape unit 2 are class 3 for rice due to restricted internal drainage and low slopes. In contrast, those of landscape unit 6 are usually class 4 for rice due mainly to the presence of coarser textured material within 1.5 m of the surface. Appendices VII and VIII provide the land suitability classes assigned to each particular mapping unit or UMA. While not specifically assessed, horticulture crops are best grown under trickle irrigation and plastic mulch on these soils.

The sodic duplex soils of subgroup 2B have a restricted plant available water capacity of 50 to 80 mm (Gardner and Coughlan 1982) due to high levels of exchangeable sodium. This feature also restricts root proliferation and water entry into the soil, necessitating high irrigation frequency. Deep ripping to 0.6 m, taking care not to overturn the subsoil, can improve infiltration and thus the recharge of the soil water deficit of these soils (Smith and McShane 1981, Gardner and Coughlan 1982). Combining deep ripping with gypsum application in either the solid form or via irrigation water will further improve infiltration and soil water recharge (Smith and McShane 1981) and improve crop establishment. More frequent, high volume irrigation over a short duration may also improve irrigation efficiency.

Sodic duplex soils of this subgroup have medium soluble salt levels below a depth of 0.6 m. Leaching of this salt down the profile away from the root zone can be achieved by the growing of a number of rice crops (Smith and McShane 1981, Gardner and Coughlan 1982).

Due to their impermeable subsoils, sodic duplex soils of subgroup 2B require precision levelling to avoid problems with surface wetness. Furrow slopes of about 0.2 per cent on runs of less than 600 m are suggested to avoid excessive slumping of ridges and to maximise the opportunity for infiltration. Extreme care should be taken when levelling soils of this subgroup to minimise removal of topsoil. The topsoil or A horizon depth for most of the soils of this subgroup is less than 0.2 m.

Other sodic duplex soils with thick surfaces (A horizons >0.3 m) and subsoils that do not become strongly alkaline (pH>7.9) and sodic (ESP>6) until a depth of 0.9 m make up subgroup 2C. Soil types 2Dbc, 6Dbe, 6Dyb, 6Dye and 6Dyf comprise this subgroup and total some 203 ha of Haughton Stage 1.

Soils of this subgroup are generally suitable for the furrow irrigation of sugarcane, maize and capsicums, but not suitable for rice due to their freely draining characteristics. Some of these soils are suitable for trickle irrigation of mangoes, depending on subsoil sodicity. In this area, occurrences of these soil types are not large and the narrow shape of some mapping units causes them to be assessed as class 4, particularly when associated with very dissimilar soils.

4.5 Constraints to irrigation farm design

Haughton Stage 1 presents a number of difficulties for subdivision and design of irrigation farms. The main difficulties are (i) the extent and distribution of land assessed as unsuitable for irrigation, (ii) the incidence of relict alluvial landforms and (iii) existing erosion and erosion hazard areas.

Flooding, particularly in areas adjacent to Barratta and Oaky Creeks may also prove to be a major constraint to development. It is recommended that flood modelling be a part of detailed investigations of the area prior to its development. Groundwater investigations and modelling of groundwater responses under various crop-irrigation scenarios should also be carried out. This is particularly important if the area is developed for rice production and if there are barriers to groundwater flow away from the area.

4.5.1 Extent and distribution of land unsuitable for irrigation

Approximately 1100 ha or 26 per cent of Haughton Stage 1 has been assessed as unsuitable for the irrigation of all five main crops, sugar-cane, maize, rice, capsicums and mangoes. This proportion of unsuitable land is the highest yet encountered on the Left Bank of the BRIA. Areas assessed as unsuitable for all five crops for Mulgrave, Northcote, Jardine and Haughton Stage 3 Sections represent 22, 7, 9 and 13 percent of total areas surveyed respectively. The high proportion of unsuitable land in Mulgrave Section is a result of the inclusion of extensive upland areas in the south of the survey area.

A listing of the unsuitable UMAs for Haughton Stage 1 and the limitation subclasses that are responsible for this outcome are shown in Table 8. Soil distribution complexity, erosion hazard, sodicity, soil surface conditions (for maize and capsicums), gradient, deep drainage (for rice) and salinity for mangoes are the main limitations which have been assessed as severe and resulted in these UMAs being class 4 or 5.

Much of this unsuitable land is located adjacent to Haughton Main Channel (see map in rear pocket). This will necessitate the construction of lateral channels to serve the more suitable land some distance from HMC. Very little suitable land will be able to be commanded direct from HMC and this will add to the cost of development of the area.

Table 8.	Selected	limitation	subclasses f	for any	UMA	unsuitable	for	sugar-cane,maize,	rice,capsicums	and	mangoes,
Haughton S	Section -	Stage 1, E	Burdekin Rive	er Irri	gatic	on Area.					

ST1	ST2	C	UMA	m	pd	id w	e p	ts	50 S	a S	ps	tp	so	sa	Mz	sa so t	dd	pd R	pd j		sa	Сар	so	sa	dio	d w	Mg	ha
2Dba		N	8	र	2	3	23	3	4	24	4	z 7	4	3	4	4.4		4 4	2	5 4	3	4	4	4	2	4 2	4	1 1
2004		M	77	z	-	z	27	2	7	2 /	7	27	7	z	7	4 4		- 7		2 1	7	7	7	1	2 /		7	11 6
Zuba		N		2		2	3	2	7	24	7	2 2	4	7	7	42				, 4		7	7	7	2	+ J / 7	7	2 1
Zuba		N	80	2		2	2	2	4	24	4	23	4	2	4	42		44) 4		4	4	4	2 4	+	4	2.1
2Dba	2Dba\	N	90	5		5	_ 5	_	4	24	5	_ 5	9 4	5	4	42		. 4	:	54	· <u> </u>	4	4	4	2 4	4 5	4	37.5
2Dba	2Dba2	2 N	107	3	4	3	23	3	4	24	4	33	5 4	3	4	44		44		54	5	4	4	4	2 4	42	4	11.5
2Dba	2Dba2	2 N	121	3		3	3		4	24	- 4	3	5 4	- 3	4	4		4		34	3	4	4	4	24	43	4	16.5
2Dba		N	129	3	2	3	3	2	4	24	- 4	23	5 4	3	4	42		- 4		34	3	4	- 4	4	24	43	4	6.2
2Dba	2Ddb	N	164	3		3	3		4	24	- 4	. 3	; 4	3	4	4		4		34	2	4	4	4		43	4	24.8
2Dba	2Ddb	N	201	3		3	3	2	4	24	4	2 3	4	3	4	43		4		34	3	4	4	4		43	4	21.4
20ba	20662	N N	205	3		-		2	ż	24	3	27		3	Å	43		Ĺ		3 4	3	À	Å	Ĺ		43	À	25.8
2000	20 db	. n.	219	7	2	ž	7	2	7	2/		2 7		7	Ā	47			:	2 /		L.	ž	ž			L	4.0
2008	ZDUD	N	210	7	2	7		2	7	24	7	2.	, 4	7	7			7	:	, 4 , ,		7	7.	7		, 7 , 7	7	7.7
ZUDa		N	220	2		2		2	4	24	4	~ ~ ~	, 4	2	4	4 5		4	:	, y		4	4	4	1	+ J / 7	4	1.0
2Dba	_	N	229	5	-	5	1	2	4	24	4	2	94	5	4	4 5		4		24	5	4	4	4		45	4	4.9
2Dba	2Ugk	Y	236	3	2	3	3	2	4	24	3	2:	5 4	3	4	4 2		4	2	54	÷ 3	4	4	4		44	4	6.8
2Dba	2Ddb	N	243	3		3	23	3	4	24	- 4	33	54	- 3	4	44		- 4		34	3	4	4	4		42	4	29.9
2Dba	2Ddb	Y	251	3		3	3	2	4	24	- 4	23	54	3	- 4	43		- 4		34	· 3	4	4	4		43	4	42.3
2Dba		N	270	3		3	23	3	4	24	- 4	33	54	3	4	43		4		34	3	4	4	4		43	4	1.7
2Dba		N	105	3	4	3	33	3	4	24	- 4	4	54	3	4	45		5		34	3	4	4	4	2 /	42	4	2.4
20ba		N	204	3	•	3	23	3	4	24	4	3 3	5 4	3	4	4 5		5		34	3	4	4	4		4 2	4	7.5
20ba	6Dvb	> v	240	ž	4	ž	- 7	4	i	24	3	4	ι.	3	Ĺ	4 5	4	5	4	3 4	3	Å	Ĺ	Å		42	Å	12 0
2004	2046	- I N	240	z	-	z	z 7	z	7	27		7		z	7	45	-	5		2 /	 	7	7	7			7	13 1
2004	2000		200	7		7	77		7	27	7	7	, ,	7	7	75		2		2 /		7	7	7		75	7	2/ 0
ZUDa	ZUDa	2 N	200	2		2	33	2	4	24	4	4) 4 /	2	4	4 2	,	, ,		5 4		4	4	4	- [']	4 2	4	24.9
20baz	2090	N	97	S		S		2	4	24	3	2:) 4	2	4	4 3	4	44		5 4	2	4	4	4	2 (4 3	4	1.5
2DbaE		N	128				5			5					5			2				5					5	1.4
2DbaE		N	203				5			5					5			5				5					5	2.0
2Dbb	2Ddb	N	172	3		3	23	53	4	24	3	33	54	- 3	4	44		- 4		34	2	4	4	4	2	42	4	11.2
2Dbb	2Dba	N	264	3		3	23	3	4	24	3	33	54	- 3	4	43		- 4		34	2	4	4	4		43	4	10.3
2Dbb	2Ddb	Y	272	3		3	33	3	4	24	3	4 3	34	3	4	45		5		34	2	4	4	4		42	4	11.8
2DbbF		Ň	96				5			5					5			5				5					5	3.3
2066		N	103				5			5					5			5				5					5	7.3
20bc2	2 20ho	2 10	20	7	4	τ	<u> </u>	2			7	2	, ,		4	7	4	44	4	7	ς Γ	á	6	3	2	د ۲	á	17 1
20000			2/0		-	2	۲,			5	-				5	5	-		-		•	5	-	2			5	/ 9
20 DOL		N	249	7		7	ר ר		,	2	7		,	7				ر ر		z /		1	,	1	2	1 2	1	4.0
ZUOD	ZUYD	N	10	2		2	_ <u> </u>	2	4	24	2		, 4 , <i>i</i>	 	4	44	,	4		5 4	2	4	4	4	2 '	4 2	4	75.0
2Ddb	2Dda	2 Y	81	5		5	-	2	4	24	1	2.	5 4	- 5	4	4 5	4	4		5 4	2	4	4	4	2 '	45	4	55.2
2Ddb	2Dda	Y	85	3		3	3	52	4	24	4	2	54	3	4	43		4		54	2	4	4	4	2 (43	4	55.7
2Ddb	2Dyb	N	113	3	2	3	3	5 2	4	24	- 4	2	54	3	- 4	43		4		34	2	4	4	4	2	43	4	8.1
2Ddb	2Dba	N	4	3	2	3	33	53	4	24	4	4 :	54	3	4	45		5		34	2	4	4	4	2	42	4	16.2
2Ddb	6Ucb	Y	72	3	4	3	3	5 2	4	24	4	2	34	3	4	43	5	45		34	2	4	4	4	2	43	4	48.2
2DvaF	:	Ň	256	-	•	-	5	-	,	5				2	5		-	5				5	-			-	5	11.1
29n	-	N	107							5					5			5				5					5	1 3
20p		N N	2/5			2	5) Z		5	7	. . .	2 2		5	5	2	5			ξ	5	7			1. 2	5	6.0
zuga		N	247			2	50			ر	3		, ,	•	2	,	4	,			,	2	5			- C	,	0.0

ST1	ST2	С	UMA	m	pd	id	we	Suga pt	so	ane sa S	(S) ps	Ma t	ize p :	e (so	Mz) sa	Mz	sa	R so t	ice dd	(R) pdR	Caps pd p	sicu Sicu	ums D Sa	(Ca a Ca	ip) ip	N so s	lang sa c	jo J i	(Mg) dw) Mg	AR h
2UgdE		N	95				5			5						5				5				5	;					5	1
2UgdE		N	250				5			5						5				5				5	j					5	2
2UgeE		N	127	_		_	5			5	-		_		-	5			_	5				. 5	•					5	1
2Ugk	2Dba	Y	92	- 5		5	_	2	4	24	5	-	5	4	5	4		42	2	54	4	+ 4	•	24	ł	4	4 2	<u> </u>	44	4	25
6Dba	6Dba3	N	29	5		5	2	55	4	24	5	5	5	4	3	4		44		. 4	3	,	•	2 4	•	4	4 4	<u> </u>	42	4	35
60ba	(D	N	35	5		5		3	4	24	2	2	2	4	2	4		42		44	3		+ 4	24	ł	4	4 4	<u> </u>	4 3	4	70
60ba	6DYJ	Y	50	5		2		22	4	24	2	2	2	4	2	4		43		44	2		•	2 4	•	4	4 6	<u> </u>	4 3	4	30
50ba		N	20	2		2		3	4	24	27		2	4	2	4		42	F	44	2	, ,	•	24	ŀ	4	4 4	2 ' 7	43	4	10
60ba	/ 0 0	N	20	2	,	2	~	277	4	24	27	7	2	4	2	4		42	2)) [3		• •	24	•	4	4 3	ינ ר	4 3	4	14
60ba	ouraz	T N	150	2	4	2	2	22	2	4	2	5	2	2		4		2 2	7	4 2		· ·	+	4	•	4	4 4	<u> </u>	42	4	1
oppa	6000	N	241	27	<u>د</u>	2	4	2 2	2	2	2	2	2	2		2		2 2	2	5	50		+ /	2	,	4	÷.	່	4	4	1
		N	150	27	4	2	2	2 2	~	2 /	2	2	2	2	z	4		23	4	4	4 4	2	+ , .	2 /		4	2.	2'' ว	4 3	4	2
	(Dha)	N	100	2	4	2 7	2	2 2	4	24	2	2	כ ד	4	2	4		45	4	2	4 3	2 2	•	2 4		4	4.	י ב כ	4 C 1. Z	4	1.2
	40662	N N	109	3		5	5	32	4	24	J	2	2	4	5	5		4 3	4	5	-		•	2 4		4	4 4	<u> </u>	4 3	5	20
	00002	. N 	190	z		z	ر	z	1.	2 /	3		z	1.	z	6		1.2		ر ۱	7	z .		Ĩ		1.	<u>،</u> ،	z	/ Z	1	<u></u> 27
		N	252	ר ד		ר ד	2	ך ג ג ג	7	24		z	z	7	7	7		1.		7		2		7		7	7.	,	4 2	7	6
6000	6Dva	v	170	7		7	2	3 2	z	2	7	2	3	7	2	Ā		 	5	5	-	ź	i.	2 1		7	2	2	23	4	20
6Dva	Alich	Ý	38	3	- 2	4		2	2	2	2		2	ž	-	ž		22	5	5	4 2	5	2	2		2		2	43	ž	18
6Dvo	Allee	Ň	62	ž	4	Ž		42	2	, L	-	2	2	3		4		22	5	45	4		Ĺ	2		Å	•	-	43	4	
6Dva	0000	N	162	ž	7	3		2	2	4		-	2	3		4		2	5	55	4	5	2	2		2			43	7	
6Dve		N	244	3	4	3	2	33	-	Ĺ.		3	3	2		Å		- 5	5	5	4 3	3	3	4		ż			42	Å	2
6Dva		N	36	3	-	3	-	3	4	4	3		3	4	2	ż		4 2	-	44		3	4	2 4		i,	4 :	2	$\frac{1}{4}$ $\frac{1}{3}$	4	
6Dva		N	166	3		3		3	4	4	. 3		3	4	2	4		4 2		4	. 3	3,	4	2 4		4	4	2	43	4	5
6Dva2	6Dba2	N	39	3		3		22	4	4	2	2	2	4	2	4		43	4	44		2	4	2 4		4	4	2	43	4	10
6Dva2	6Dba	N	61	3		3		32	4	4	3	2	3	4	2	4		43	4	44	3	3	4	2 4	ł	4	4 ;	2	43	4	15
6Dvg2		N	67	3	4	3		22	- 4	4	2	2	2	4	2	4		43	- 4	44	4 2	2	4	24	í.	4	4 ;	2	43	4	(
6Dvq2	6Dvi2	N	126	3	2	3		3	4	4	3	;	3	4	2	4		4	4	4	3	3	4	24	•	4	4 ;	2	43	4	3
6Dyg2		N	173	3		3	2	33	- 4	4	. 3	3	3	4	2	4		44	4	4	3	3	4	24	÷	4	4 ;	2	42	4	8
6Dyg3	6Dyg	N	32	3		3		3	4	4	. 3	;	3	4	2	4		42	3	44	. 3	3	4	2	4	4	4 ;	2	43	4	19
6Dyg4	6G	N	19	3		5		22		5	3	2	2	2		5		3	5	5	2	2	3	5	5	4		3	23	4	6
6Dyg4	6DbaV	N	21	4	- 4	5	2	23		5	3	3	2	2		5		5	5	5	1	2	3	5	5	4		4	22	4	12
6DygE	6Dye	N	253				5			5						5				5				5	5					5	8
6Dyi	6Dyj2	? N	33	3		3		32	- 4	24	. 4	2	3	4	3	- 4	2	43		4		3	4	34	4	4	4 ;	2	43	4	83
6Dyj	6Dyg3	N	59	3		3		32	4	34	. 3	2	3	4	4	4	3	43		4	. 3	3	4	4 4	•	4	4 ;	2	43	4	15
6Dyj		N	70	3	2	3		3	4	24	. 4		3	4	3	4	2	42		4	. 3	3	4	34	4	4	4 ;	2	43	4	0
6Dyj		N	74	3	- 4	3		32	4	24	. 3	5 2	3	4	3	4	2	42		4	4 3	3	4	34	÷	4	4 ;	2	43	4	3
6Dyj		N	153	3	4	3	2	33	- 4	24	. 4	3	3	4	3	4	2	43		44	4 3	3	4	34	÷	4	4 ;	2	42	4	(
6Dyj		N	154	3	3	3		3	4	24	. 4	•	3	4	3	4	2	42		44	33	3	4	34	4	4	4 ;	2	43	4	1
6Dyj		N	163	3		3		3	4	24	. 4	•	3	4	3	4	2	42		4	. 3	3	4	34	4	4	4;	2	43	4	14
6Dvi		N	167	3	2	3		3	- 4	24	. 3	5	3	4	3	4	2	42		4	. 3	3	4	34	4	4	4 ;	2	43	4	5

Table 8 (Cont.)

ST1 ST2	С	UMA	m	pd	id w	Si e p	ugaı ts	~-C so	ane sa S	(S) ; p:	s t	Mai p	ze so	(Mz sa) Mz	sa	Ri so	ce t	(R) dd p) odi R	Caps pd p	icun so	ns (sa	Cap) Cap	so	Man sa	go d	(Mg id w) M	g	AREA ha
6Dyj 6Dyj 6Dyj 6Dyj 6Dyj2 6Dyj 6Dyj3 6UgcE	N N N N N	171 176 211 221 51 88 271	3 3 3 3 3 3 3	4 2 3 2	3 3 3 3 3 3 3	3 3 3 3 3 3 5	2 2 2 2	44444	2 4 2 4 2 4 2 4 2 4 2 4		3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 3 2 3	2 3 3 3 3 2 3	44444	3 3 3 3 3 3 3	44445	2 2 2 2 2 2 2	44444	322223	4	4 4 4 4 4 4 4 5	3 3 3 3 3 3	4 4 4 4 4 4	3 3 3 3 3 3 3	4 4 4 4 4 5	4 4 4 4 4 4	44444	2 2 2 2	444444		444445	4.2 4.7 1.1 3.8 15.8 1.9 7.9

ST-Soil Type, C-Complex, Limitations: m-plant water availability, pd-soil distribution complexity, id-internal drainage, w-wetness, e-erosion, p-permeability, t-gradient, so-sodicity, sa-salinity, ps-soil surface conditions, dd-deep drainage, d-soil depth. S-Sugar-Cane, Mz-Maize, R-Rice, Cap-Capsicums, Mg-Mangoes. Within the parcels of more suitable land some distance from HMC, unsuitable areas are interspersed, often as linear shaped areas. This feature will limit the number of farms that can be subdivided from the area and will result in considerable areas of unsuitable (class 4 land) within some farms. This is highly undesireable.

When comparing the land suitability maps for each of the main crops, the potential for rice production seems to be far worse than for sugar-cane. However, as explained more fully in Sections 3.4.4 and 4.3, the widespread occurrence of strongly sodic soils (60 per cent of the total area) and the likelihood of this limitation being more severe than currently assessed, places some doubt on the potential of the area for sugar-cane production. The somewhat isolated nature of Haughton Stage 1 in terms of all weather road access and distance from existing cane railways present further disincentives to the development of the area for cane production.

Some of these features of the area are of course advantageous if a more salt and sodium tolerant crop such as cotton were to be grown in the BRIA. This crop would need to be isolated from areas of cane where aerial application of herbicides is often practised. Approximately 2826 ha of Haughton Stage 1 has been assessed as suitable for the irrigated production of cotton.

4.5.2 Incidence of relict alluvial landforms

As discussed in Section 2.2, outbreaks of Oaky Creek and Nine Mile Lagoon Creek over the survey area have been numerous, resulting in a high degree of soil complexity. Some of the resultant relict alluvial landforms will cause problems with subdivision of the area and future irrigation.

In some instances (e.g. UMA 62 and 64 in the south and 224 in the north), these major relict features occur as sandy ridges, elevated above the surrounding land. These highly permeable ridges are flanked by areas of saline and sodic soils which may represent past outflow or discharge areas. Other relict alluvial landforms have been identified as prior streams (e.g. UMAs 38, 42 and 43). These features are often raised above the surrounding land and are characterised by coarse textured permeable soils along the centre of the prior stream, flanked by deep surfaced sodic duplex soils representing flood-outs of the previous stream.

In other areas of Haughton Stage 1, there are less obvious prior streams characterised by permeable sandy soils, traversing areas of less permeable sodic duplex soils and cracking clays (e.g. UMAs 50, 72, 119 and 122). Areas with such soil complexity should be excluded from the subdivision layout where possible to avoid excessive deep drainage losses and difficulties with on farm irrigation layout.

4.5.3 Existing erosion and erosion hazard areas

During the field survey many localised areas of soil erosion were observed, mainly along the sloping margins of the area to the north, south and east of the area. In most instances sodic duplex soils occupy the sloping margins and if disturbed will further erode. The location of areas of significant erosion, where observed in the field, have been recorded and can be shown on 1:10 000 scale working plans of the soils of the area.

A number of creeks with eroded margins which act as outlets for surface flow into Barratta Creek have been mapped (e.g. UMAs 96, 103 and 256) and a major erosion gully occurs along the southern boundary of the survey area.

A satisfactory buffer should be established between any planned farms and all of the above areas, whether already severely eroded or highly susceptible to further erosion if disturbed.

5. ACKNOWLEDGEMENTS

The author would like to thank:

- . Mr Nev Christianos for his assistance during the survey;
- . Mr Marc Bryant of the Cartographic Section for his preparation of the map;
- . Mr Dennis Baker and technical staff of Agricultural Chemistry Branch for the analysis of soil samples;
- . Mrs Val Eldershaw and Mr Richard Tucker for editing the report; and
- . Miss Julie Collett for typing the report and Miss Debra Hanfling for preparation of graphs of soil chemical properties.

6. REFERENCES

- Baker, D.E. (1991), Interpreting Soil Analyses from Soil Surveys Conducted in Queensland, Queensland Department of Primary Industries, Bulletin No. QB91001.
- Baker, D.E., Rayment, G.E. and Reid, R.E. (1983), Predictive relationships between pH and sodicity in soils of tropical Queensland, *Communications in Soil Science and Plant Analysis* 14, 1063-1073.
- Basinski, J.J. (1978), Land Use on the South Coast of New South Wales, a study in methods of acquiring and using information to analyse regional land use options, General Report, Volume 1, CSIRO, Australia.
- Bruce, R.C. and Rayment, G.E. (1982), Analytical methods and interpretations used by the Agricultural Chemistry Branch for Soil and Land Use Surveys, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Bulletin No. QB82004.
- Coughlan, K.J. (1979), Influence of micro-structure on the physical properties of cracking clay soils, Report to Reserve Bank of Australia, Agricultural Chemistry Branch, Department of Primary Industries Brisbane, cited with permission.
- Donnollan, T.E. (1991), Understanding and Managing Burdekin Soils, Queensland Department of Primary Industries, Land Resources Branch.
- Donnollan, T.E. and Day, K.J. (1986), Land suitability classification for irrigation in the Burdekin River Irrigation Area, Land Resources Branch Workshop, Kooralbyn Valley, 12-16 May, 1986, Theme Land Suitability, Program and draft papers.
- Donnollan, T.E., McClurg, J.I. and Tucker, R.J. (1990), Soils and land suitability of Leichhardt Downs Section: Burdekin River Irrigation Area Part B: A Detailed report, Queensland Department of Primary Industries, Land Resource Bulletin QV90002.
- Gardner, E.A. and Coughlan, K.J. (1982), Physical factors determining soil suitability for irrigated crop production in the Burdekin-Elliot River Area, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report No. 20.
- Hubble, G.D. and Thompson, C.H. (1953), The soils and land use potential of the Lower Burdekin Valley, North Queensland, CSIRO, Australian Soils and Land Use Series, No. 10.
- Isbell, R.F. (1992), A Classification System for Australian Soils (Second Approximation), CSIRO Division of Soils, Technical Report 1/1992.
- Land Resources Branch staff (1990), Guidelines for agricultural land evaluation in Queensland, Queensland Department of Primary Industries, Information Series Q19005.

- McClurg, J.I., Tucker, R.J. and Donnollan, T.E. (1993), Soils and land suitability of the Mulgrave Section : Burdekin River Irrigation Area Part B : Detailed Report, Queensland Department of Primary Industries, Land Resources Bulletin No QV93001.
- McDonald, R.C. Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984), Australian Soil and Land Survey Field Handbook, Inkata Press, Melbourne.
- Northcote, K.H. (1979), A factual key for the recognition of Australian Soils, 4th Edition, Rellim Technical Publications, Adelaide, South Australia.
- Reid, R.E. (1988), Soil Survey Specifications, in Australian Soil and Land Survey Handbook : Guidelines for Conducting Surveys (Gunn, R.H., Beattie, J.A., Reid, R.E. and van de Graaff, R.H.M.), Inkata Press, Melbourne.
- Reid, R.E. and Baker, D.E. (1984), Soils of the Lower Burdekin River-Barratta Creek-Haughton River Area, North Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Bulletin No. 22.
- Smith, G.D. and McShane, T.J. (1981), Modification and management of irrigated soils in the Lower Burdekin Valley, Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report No. 17.
- Stace, H.C.T., Hubble, G.D. Brewer, R., Northcote, K.H., Sleeman, J.R., Mulcahy, M.J. and Hallsworth, E.G. (1968), A Handbook of Australia Soils, Rellim Technical Publications, Glenside, South Australia.
- Thompson, W.P. (1977), Soils of the Lower Burdekin River Elliot River Area, North Queensland, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report No. 10.
- Thompson, W.P. and Reid, R.E. (1982), Soil profile classes of the Lower Burdekin Valley, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report No. 21.
- Thompson, W.P., Cannon, M.G., Reid, R.E. and Baker, D.E. (1990), Soils of the Lower Burdekin Valley, North Queensland, Redbank Creek to Bob's Creek and south to Bowen River, Queensland Department of Primary Industries, Land Resource Bulletin QV90004.
- Walker, J. and Hopkins, M.S. (1984), Vegetation, in, Australian soil and land survey field handbook (McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S.) Inkata Press, Melbourne.

APPENDIX I

VEGETATION OF HAUGHTON SECTION STAGE I

- COMMON AND SCIENTIFIC NAMES

Trees:	
Beefwood	Grevillea striata
Cabbage gum	Eucalyptus papuana
Carbeen	Eucalyptus tessellaris
Cocky apple	Planchonia careya
Grey bloodwood	Eucalyptus polycarpa
Pandanus	Pandanus spp.
Poplar gum	Eucalyptus alba
Tea-tree	Melaleuca nervosa
Shrubs:	
Beefwood	Grevillea striata
Broad leaf tea-tree	Melaleuca viridiflora
False sandalwood	Eremophila mitchellii
Grasses:	
Black spear grass	Heteropogon contortus
Blue grasses	Bothriochloa and Dican

Brown sorghum

Brown top or button grass

Cane grass

Flinders grass

Giant spear grass

Golden beard grass

Kangaroo grass

Purple top Rhodes grass

Heteropogon contortus Bothriochloa and Dicanthium spp. Sorghum nitidum Eulalia fulva Ophiurous exaltatus Iseilema spp. Heteropogon triticeus Chrysopogon fallax Themeda australis

Chloris barbata

APPENDIX II

MORPHOLOGICAL AND ANALYTICAL DATA FOR REPRESENTATIVE SOIL PROFILES -HAUGHTON SECTION - STAGE 1, BURDEKIN RIVER IRRIGATION AREA SOIL TYPE: 2Ugd SITE NO: SIA A.M.G. REFERENCE: 513 970 mE 7 813 995 mN 20NE 55

GREAT SOIL GROUP: Grey clay PRINCIPAL PROFILE FORM: Ug3.2 SOIL TAXONOMY UNIT: FAO'UNESCO UNIT:

TYPE OF MICRORELIEF: Normal gilgai VERTICAL INTERVAL: .25 m HORIZONTAL INTERVAL: 10 m COMPONENT OF MICRORELIEF SAMPLED: Mound SURFACE COARSE FRAGMENTS: No coarse fragments SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL: SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE: VEGETATION

STRUCTURAL FORM: Mid-high open woodland DOMINANT SPECIES: Eucalyptus alba

ANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Periodic cracking

HORIZON	Ľ)EPT	H											DESCI	RIPT	ION														
N1	0	to	03	m	Gre	yish	yel]	low-b	rown	(10	YR4/2	2) mx	ois	st; s	ilty	cla	y 1	oam;	mas	siv	e;d	lry;	mo	lera	tel	y we	ak.			
A2sb	.03	to	.20	m	Gre ble sec	yish ached ondar	yell ; fe y; c	low-b w fin kry; n	rown ne di noder	(10 isti ate	YR5/2 nct b ly fi	2) en prown irma.	ois n n	st, du pottle	ill s;	yell ligh	lowi: ht m	sh o ediu	ranç m c]	је (ay;	10YF mod	7/2 lera) d te :	2-5mm	dry na	spo ngul	ar b	cally locky		
B21	.20	to	.42	n	Gre	yish erate	yel] 2-5	iow-bi mmai	rown ngula	(10 ar bi	YR4/2 locky	2) no 7 seo	ois	st; ma dary;	ny i no:	medi ist;	.uma) 1980 (prom dera	iner telj	t t fi	rown	1800	ttl	es; I	ned:	iuma	heav	y clay	;	
B22	.42	to	.62	n	Dar! ang	k gre ular	yist bloc	yel: ky so	low (econd	2.5 lary	94/2) ; moi) nno: ist;	ist nc	; few derat	fin ely	ne f fir	ain ma;	t br few	own medi	not. um	tles mang	; m ani	edi fer	ana ha bus i	eav; nodi	y cl ules	ay; :	strong	5-10 m	D
B23k	.62	to	.76	m	Yel ang man	lowis ular yanif	h br bloc erou	own kyse is noo	(2.5¥ econd dules	(5/3) lary) moi ; moi	ist; ist;	fe noc	w fir derat	e fa ely	aint wea	bro k;	own Comm	mott on m	les edi	; me una c	diu arb	n h ona	eavy te no	cla odu	ay; les,	stro	ng 5-1 y few n	0mm medium	i
B24	.76	to	1.62	D	Yel to i ver	lowis moder y few	h br ate med	rown 100-2 Lium 1	(2.5¥ 200mm nanga	5/3 len nife) moi nticu erous	ist; ilar s noo	me te lul	dium ertian es.	hear T; I	vy c mois	lay t;i	; st node	rong rate	5- 1 y	10mm weak	an ;f	gul ew i	ar bi medin	loci una (ky s carb	ieconi ionati	dary, e nodu	partin les,	g
B25	1.62	to	1.80	m	Dul: par	l yel ting	lowi to m	.sh bi iodera	rown ate 1	(10) 00-2	7R5/3 200 m	8) mu a len	ois nti	t; m cula	diu te	a cl rtia	ay; ry;	mod moi	erat st;	e 5 mod	-10m erat	n a ely	ngu fi	lar 1 m.	610	cky	seco	ndar y ,		
! Depth ! ! metre	! 1: ! p s ! !	55 H 624	oil/ EC dS/m OC	Water ! Cl ! @105C!	Parti CS Fi	cle S 5 S 1050	ize! C !	CEC	Exch. Ca m.e	Ca Mg eq/10	tions Na 00g 5C	ĸ	! ! ! !	Total P	E10 K 8	emen DC	ts S	1 M 1 AD	oist N 33 Q	ure * 1 %	s 500* C	1D1	sp.1 R1 8 4	Ratio R2 DC	D! ! !	Exch Al	Excl Acid eq/	h ECEC d 100g 5C	! pH !CaCl ! !@ 40	21 21 1 C1
! B 0.10 ! 0.10 ! 0.20 ! 0.30	15. 15. 16. 16.	9 6 1 4	.03 .04 .02 .02	.001 ! .002 ! .001 ! .001 !	2 3 2 1 1 1	3 31 2 21	34 ! 68 !	14 30	3.3 9.8	3.1 8.1	.20 1.3	.57	1	.019	1.2	0.0 8.0	016 011	! ! 2. ! 3. ! 5.	8 6 4		10 21 21	1 1	66 45 85		1 1 1 1				1 1 1 1	

0.90 1.20 1.50	1 8.7 .53 .04 1 8.6 .62 .08 1 8.3 .73 .08	46 ! 2 11 23 64 ! 34 ! 2 10 24 65 ! 34 ! 2 10 24 65 !	30 18 15 4.3 . 34 46 15 5.3 .	43 ! .015 1.45 .017 36 ! .019 1.50 .015 !	14.0 20 ! .78 15.8 1 14.0 1	
Depth metres	10rg.C !Tot.N ! ! (W&B)! ! ! % ! % ! !@ 105C!@ 105C!	Extr. P ! HCl Acid Bicarb.! K mg/kg ! meq4 @ 105C :@105C	!CaCl2 Extr! ! K P ! Fe ! mg/kg ! ! @ 105C !	DTPA-extr. ! E Mn Cu Zn B !SO4 mg/kg ! @ 105C !	xtractable ! P ! S NO3N NH4N !Buff Equil mg/kg !Cap ug/L! @ 105C ! @ 40C !	Alternative Cations : CEC Ca Mg Na K ! m.eq/100g ! @ 105C !
 B 0.10	! 1.6 ! .12 !	14 9 ! .67	! ! 109	80 1.2 0.7 !	1 1	!

!----* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 2Ugd SITE NO: SIB A.M.G. REFERENCE: 513 970 mE 7 813 995 mN ZONE 55

GREAT SOIL GROUP: Grey clay PRINCIPAL PROFILE FORM: Ug5.24 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: Normal gilgai VERTICAL INTERVAL: .25 m HORIZONTAL INTERVAL: 10 m COMPONENT OF MICRORELIEF SAMPLED: Depression SURFACE COARSE FRAGMENTS: No coarse fragments

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Periodic cracking

HORIZON	DEPTH	DESCRIPTION
A11	0 to .02 m	Greyish yellow-brown (10YR4/2) moist, yellowish grey (2.5Y6/1) dry; light medium clay; massive; dry; moderately firm.
A12	.02 to .12 m	Greyish yellow-brown (10YR4/2) moist; common fine distinct pale mottles, very few fine distinct brown mottles; light medium clay; moderate 2-5mm angular blocky secondary; moist; moderately weak.
B21	.12 to .58 m	Greyish yellow-brown (10YR4/2) moist; medium clay; strong 5-10mm angular blocky secondary; moist; moderately firm; very few medium manganiferous nodules.
B22	.58 to 1.22 m	Greyish yellow-brown (10YR4/2); medium heavy clay; strong 5-10mm angular blocky secondary, parting to moderate 100-200mm lenticular tertiary; moist; moderately firm; few medium manganiferous nodules.
B23	1.22 to 1.42 m	Dark greyish yellow (2.5Y4/2); many medium distinct brown mottles; medium clay; strong 2-5mm angular blocky secondary, parting to moderate 100-200mm lenticular tertiary; moist; moderately firm.

Yellowish brown (2.5Y5/3); few medium faint grey mottles; medium heavy clay; strong 5-10mm angular blocky secondary, parting to moderate 100-200mm lenticular tertiary; moist; moderately firm. B24 1.42 to 1.74 m

!!!!!!	Depth metres	! 1:5 ! pH !	Soil/ EC dS/m 40C	Water Cl % @1050	Partic ! CS FS !	le Size S C % 105C	Exch CEC Ca m.	. Cations Mg Na eg/100g @ 105C	K	Total Eler PK %	ments S	! Moistures ! ADM 33* 1500 ! % ! @ 105C	!Disp.Ratio !*! R1 R2 ! ! @ 40C	Exch Exch ECEC Al Acid m.eg/100g 0 105C	! pH ! !CaC12! ! ! !@ 40C!
	B 0.10 0.10 0.20 0.30 0.60 0.90 1.20 1.50	! 5.8 ! 5.6 ! 6.1 ! 6.1 ! 5.9 ! 6.6 ! 7.5 ! 7.7	.06 .13 .05 .05 .29 .43 .52 .69	.001 .002 .001 .004 .040 .061 .073 .100	! ! 3 17 ! 3 19 ! 3 20 ! 2 19 ! 1 14	35 44 31 49 30 49 30 52 28 58	28 8.3 25 9.7 25 9.9 26 10 30 13	4.0 .28 5.8 .98 7.0 2.2 8.5 3.4 12 5.1	.87 .38 .20 .23 .23	.037 1.24 .018 1.14 .012 1.12 .010 1.17 .017 1.42	.025 .008 .007 .009 .011	1 3.7 16 3.3 5.0 18 4.9 18 4.2 17 7.2 8.5	1 5 5 6 7 7 4 8 7 8 8 9 7 1 8 8 8 9 7 1 8 8 1 1		
1.	Depth metres	!Org. ! (W& ! % !@ 10	C !Tot B)! 5C!@ 1	.N ! !Ac % ! 05C!	Extr. cid Bica mg/kg @ 105C	P ! HC. rb.! K ! me !@10	l !CaC12 ! K f%! mg/l 5C! @ 10!	Extr! P!Fe kg! 5C!	DTT Mn	PA-extr. Cu Zn H mg/kg 105C	! E: 3 !SO4: ! !	xtractable ! S NO3N NH4N !E mg/kg !C @ 105C !	P ! Suff Equil! Cap ug/L! @ 40C !	Alternative Cat CEC Ca Mg M m.eq/100g @ 105C	tions ! Na K ! !
1	B 0.10	! 1.	6!.	11 !	24 1	9 ! .6	5 !	! 170	134	2.4 1.9	!	!	!		! !1

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Mid-high open woodland DOMINANT SPECIES: Eucalyptus alba

ANNUAL RAINFALL:

DESCRIPTION

SOIL TYPE: 2UgeSUBSTRATE MATERIAL:
CONFIDENCE SUBSTRATE IS PARENT MATERIAL:SITE NO: S2ACONFIDENCE SUBSTRATE IS PARENT MATERIAL:A.M.G. REFERENCE: 511 440 mE 7 815 460 mN ZONE 55SLOPE:
LANDFORM ELEMENT TYPE: PlainGREAT SOIL GROUP: Grey clayLANDFORM ELEMENT TYPE: PlainPRINCIPAL PROFILE FORM: Ug3.2LANDFORM PATTERN TYPE:SOIL TAXONOMY UNIT:VEGETATION
STRUCTURAL FORM: Low open woodlandTYPE OF MICRORELIEF: Normal gilgaiVEGETATION
STRUCTURAL FORM: Low open woodland
DOMINANT SPECIES: Eucalyptus alba, Eucalyptus tessellaris, Eucalyptus
papuanaCOMPONENT OF MICRORELIEF SAMPLED: MoundANNUAL RAINFALL:SURFACE COARSE FRAGMENTS: No coarse fragmentsANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting, periodic cracking

HORIZON	DEPTH	DESCRIPTION
A1	0 to .02 m	Greyish yellow-brown (10YR4/2) moist; light medium clay; weak 2–5mm granular primary; dry; very firm.
A2sb	.02 to .06 m	Brownish black (10YR3/2) moist, light grey (2.5Y7/1) dry, dry sporadically bleached; light medium clay; moderate 2–5mm angular blocky primary; dry; very firm.
B21	.06 to .22 m	Yellowish grey (2.5Y4/1) moist; medium clay; strong 2–5mm angular blocky primary; dry; moderately strong; few medium carbonate nodules.
B22	.22 to .60 m	Dark greyish yellow (2.5Y4/2) moist; medium clay; strong 2–5mm angular blocky primary; moderately moist; moderately firm; very few medium carbonate nodules.
B23k	.60 to .72 m	Dark greyish yellow (2.5Y4/2) moist; medium clay; moderate 2–5mm angular blocky primary; moderately moist; moderately firm; common medium carbonate nodules.
B24	.72 to 1.10 m	Dark greyish yellow (2.5Y4/2) moist; few fine faint grey mottles; medium clay; strong 5-10mm angular blocky primary; moderately moist; very firm; very few medium carbonate nodules, very few medium manganiferous nodules.
D	1.10 to 1.63 m	Yellowish brown (2.5Y5/4) moist; few fine faint yellow mottles; light medium clay; strong 5–10mm angular blocky primary; moderately moist; very firm; very few medium carbonate nodules, very few medium manganiferous nodules.

1	Depth	!	1:5	Soil/	Water	!Pa	artio	cle	Size	1	Exch.	Cat	ions	5	!	Total	Ele	ments	: 1	Moi	sture	s	Dis!	sp.Ra	atio!	Exch	Exch ECE	C!pl	H 1
!		!	pН	EC	C1	1 (CS FS	S S	С	! CEC	Ca	Mg	Na	K	!	Ρ	K	S	!	ADM	33* 1	500*	! I	R1	R2 !	Al	Acid	!Ca	C12!
!	metres	!		dS/m	. જ	1		8		1	m.e	q/10)0g		!		જ		!		*		!		1	m	.eq/100g	1	1
!		!	6	40C	@ 105	C!	6	105	С	!	6	105	5C		1		e 80	С	1		@ 105	C	! (a 400	с!		@ 105C	1@ 4	40C!
!		,	7 2							 1					 1				1				,					,	!
	0.10	i	7.3	.05	.003	:	8 10	2 20	54	1 36	18	13	1 2	Δ7	;	015	804	017	;;	<u>4</u> 9		17		53	;			;	;
;	0.00	÷	8 9	.05	.002	i	0 1	20	54	. 30 1	10	15	1.5		;	.015	.001	.017	;	5 2		11			;			;	i
;	0.20	÷	Q 1	.1/	.002	÷	8 19	: 20	56	1 34	18	14	29	20	;	009	826	013	i	5 8		18		71	;			÷	;
÷	0.50	÷	0 1	.22	.000	÷	7 19	20	55	1 25	13	16	5 5	20	;	.000	010	011		5.3		18		1	;			÷	÷
÷	0.00	÷	0 1	7/	076	:	7 1	1 10	54	1 34	11	16	7 4	· 26	;	009	1 02	010		5.3		19	1	ñ	;			÷	;
÷	1 20	÷	0 1	.79	.070	÷	6 21	1 22	19	. Ju . 21	a 5	15	77	-20	;	.005	1 24	000	1	7 4		15		.0	;			;	;
÷	1 50	÷	0 7	.70	.033	÷	0 2		-10	; JI	5.5	15		• 27	;	.012	1.27	.00.	:	1.7					;			;	;
÷	1.30	•	0.1	./1	.051	•				•					•				•	3.5			•		•			•	
	Donth) ma		N 1			D	1 110	1 10-	ຕາວ ຊ	 v+ r 1			TTO 1	-ovt r		1	Eve	tract	abla	1	T	 >	,	11+0	rnativo C	ation	: • 1
:	Depth		/uct			-12 -13	Diar	r		1 100	VIZ E		Fe	. 14	1115	Cu 7	•		10	NUSN	NUAN	1 Rus	F	i Imri'	ni a	CEC.		Na	
÷	motrog	÷	(MOCI	· · ·	9. I	ciu.		шD.	 1 mo	-e i	ma /le	. i		; n	 	L L	11	D .50	ω	ma		100		ugur.	 []	CLC	m or /100r	NG	
÷	mettes		3 10	1	0501	ດ່	1050	1	1010	499 501	a 105	y i			A	1050		;	4	a 105	S.C.	1 1	ία Α	ug/i γr	1		A 1050		;
: 1			y 10:	JC:10 1		6	1020	-	:610	JC :	e 105	с і 			е 	1030		: 		e 10.		• •	9 9K	л 	•				
1 1	3 0 10	1	0 9	a 1	06 1	1	5	4	1 3	91			34	5	0 1	2.7	0	1				1			1				1
;_!		<u>.</u>				'	, 	·	5	·								·											i

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 2UgeSUBSTRATE MATERIAL:
CONFIDENCE SUBSTRATE IS PARENT MATERIAL:SITE NO: S2BCONFIDENCE SUBSTRATE IS PARENT MATERIAL:A.M.G. REFERENCE: 511 440 mE 7 815 460 mN ZONE 55SLOPE:GREAT SOIL GROUP: Grey clayLANDFORM ELEMENT TYPE: PlainPRINCIPAL PROFILE FORM: Ug3.2LANDFORM PATTERN TYPE:SOIL TAXONOMY UNIT:VEGETATIONFAO UNESCO UNIT:VEGETATIONTYPE OF MICRORELIEF: Normal gilgaiVEGETATIONVERTICAL INTERVAL: 15 mpapuanaHORIZONTAL INTERVAL: 9 mANNUAL RAINFALL:SURFACE COARSE FRAGMENTS: No coarse fragmentsANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting, periodic cracking

HORIZON	DEPT	H	DESCRIPTION													
A1	0 to	.02 m	Brownish black	(10YR3/2) moist; li	ght clay; massi	ive; dry; moderately firm	1.									
A2sb	.02 to	.14 m	Greyish yellow- medium distinct	brown (10YR5/2) moi brown mottles; lig	st, light grey ht clay; massiv	(10YR7/1) dry, dry spora we; dry; very firm.	dically bleached; common									
В	.14 to	.80 m	Greyish yellow- moderately mois	brown (10YR4/2) moi t; moderately firm.	st; medium clay	; moderate 5-10mm angula	r blocky primary;									
D1	.80 to 1	1.10 m	Dull yellowish moderate 2–5mm nodules.	brown (10YR5/3) moi angular blocky prim	st; medium clay wary; moderately	; very few small pebbles moist; moderately firm;	;, subangular quartz; very few medium carbonate									
D2	1.10 to 3	1.62 m	Dull yellowish moderately mois	orange (10YR6/4) mo t; very firm; few m	vist; medium cla Medium manganife	wy; moderate 2-5mm angula erous nodules, very few m	r blocky primary; edium carbonate nodules.									
! Depth ! ! metre	! 1:5 So ! pH s ! 0 40	oil/Water !Pa EC Cl ! 0 dS/m % ! OC @105C!	article Size! CS FS S C ! CE % ! @ 105C !	Exch. Cations ! C Ca Mg Na K ! m.eq/100g ! @ 105C !	Total Elements PKS % @ 80C	s ! Moistures !Disp.Ra ! ADM 33* 1500*! R1 ! % ! ! @ 105C ! @ 400	tio! Exch Exch ECEC ! pH ! R2 ! Al Acid !CaCl2! ! m.eg/100g ! ! ! @ 105C !@ 40C!									
! B 0.10 ! 0.10 ! 0.20 ! 0.30 ! 0.60 ! 0.90 ! 1.20 ! 1.50	! 6.1 ! 6.4 ! 6.5 ! 6.5 ! 7.6 ! 9.2 ! 9.1 ! 8.8	.03 .003 ! .04 .003 ! .09 .011 ! .17 .027 ! .45 .068 ! .69 .097 ! .79 .089 !	12 30 22 36 ! 2 17 27 22 43 ! 2 7 25 24 45 ! 2 9 24 21 48 ! 2 10 26 19 47 ! 2 1	1 0 5.1 6.3 .97 .30 1 3 7.5 9.1 2.8 .15 1 6 8.6 10 5.0 .17 1 8 10 12 6.1 .15 1 8 9.4 13 6.3 .26 1 1	.017 .769 .014 .007 .736 .011 .006 .805 .011 .011 1.13 .011 .016 1.32 .014	! ! ! ! 3.1 12 ! .73 ! 3.5 ! ! ! 1.4.6 15 ! .96 ! 3.6 16 ! .96 ! 9.3 17 ! .95 ! 4.2 !										
Depth ! ! metre	!Org.C ! (W&B) s ! % !@ 105C	!Tot.N ! Ex ! !Acid ! % ! r !@ 105C! @	<pre>ktr. P ! HCl !C Bicarb.! K ! mg/kg ! meq%! 105C !@105C!</pre>	aCl2 Extr! DTP K P! Fe Min mg/kg ! m @ 105C ! @	A-extr. ! Cu Zn B !SC g/kg ! ! 105C !	Extractable ! P MAS NO3N NH4N !Buff Equil mg/kg !Cap ug/L @ 105C ! @ 40C	Alternative Cations ! CEC Ca Mg Na K ! m.eg/100g ! ! @ 105C !									
B 0.10	! 1.2	1.08 1 5	5 7 ! .42 !	! 128 125	1.8.82 !	!	! !									

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 2UgkSUBSTRATE MATERIAL:
CONFIDENCE SUBSTRATE IS PARENT MATERIAL:SITE NO: S3ACONFIDENCE SUBSTRATE IS PARENT MATERIAL:A.M.G. REFERENCE: 514 150 mE 7 813 050 mN ZONE 55SLOPE:
LANDFORM ELEMENT TYPE: Plain
LANDFORM ELEMENT TYPE: Plain
LANDFORM PATTERN TYPE:
SOIL TAXONOMY UNIT:
FAO UNESCO UNIT:LANDFORM PATTERN TYPE:
STRUCTURAL FORM: Mid-high open woodland
DOMINANT SPECIES: Eucalyptus alba, Eucalyptus tessellarisTYPE 0F MICRORELIEF: Normal gilgai
VERTICAL INTERVAL: 12 m
COMPONENT OF MICRORELIEF SAMPLED: Mound
SURFACE COARSE FRAGMENTS: No coarse fragmentsANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Periodic cracking, self mulching

HORIZON	DEPTH	DESCRIPTION
A11	0 to .02 m	Dark brown (10YR3/3) moist; medium clay; moderate 2–5mm granular primary; dry; very firm.
A12	.02 to .12 m	Greyish yellow-brown (10YR4/2) moist; common fine distinct brown mottles; medium clay; very few small pebbles, subrounded quartz; strong 2-5mm angular blocky secondary; dry; very firm.
B21	.12 to .37 m	Dark greyish yellow (2.5Y4/2) moist; few fine distinct brown mottles; medium heavy clay; very few small pebbles, subrounded quartz; strong 2-5mm angular blocky secondary; moist; moderately firm; very few medium manganiferous nodules.
B22	.37 to 1.22 m	Dark greyish yellow (2.5Y4/2) moist; very few fine faint brown mottles; medium heavy clay; few small pebbles, subrounded quartz; strong 5-10mm angular blocky secondary, parting to strong 100-200mm lenticular tertiary; moist; moderately firm; few medium manganiferous nodules, very few medium carbonate nodules.
B23k	1.22 to 1.52 m	Dull yellowish brown (10YR4/3) moist; medium clay; few small pebbles, subrounded quartz; strong 5-10mm angular blocky secondary, parting to strong 100-200mm lenticular tertiary; moderately moist; moderately firm; few coarse carbonate nodules, very few medium manganiferous nodules.
D	1.52 to 1.83 m	Brown (10YR4/6) moist; medium clay; common small pebbles, subrounded quartz; strong 5-10mm angular blocky secondary; moderately moist; moderately firm; common medium carbonate nodules, very few medium manganiferous nodules.

1 1 1 1	Depth metres	! ! !	1:5 pH	Soil, EC dS/r 40C	Water Cl 8 @1050	!Par ! CS !	ticl SFS @1	e St S % 05C	c ! C ! !	CEC	Ca Ca m.e	Cat Mg q/10 105	ions Na 10g 5C	ĸ	! Tota ! P !	l Ele K % @ 80	ements S IC	! Mo ! ADM !	istures 33* 1500 % @ 105C	!D:	isp.Ratic R1 R2 @ 40C	! Exc ! Al ! !	h Exch ECEC Acid m.eq/100g @ 105C	! pH ! !CaC12! !@ 40C!
	B 0.10 0.10 0.20 0.30 0.60 0.90 1.20 1.50 1.80		6.4 5.9 5.9 6.0 6.9 8.0 8.3 8.8 8.8	.04 .15 .18 .21 .40 .64 .68 .76 .58	.002 .016 .023 .030 .055 .091 .089 .089 .089	! 11 ! 7 ! 7 ! 6 ! 6 ! 6	19 13 13 13 15 15	15 9 15 6 19 6 21 9 21 9	55 ! 56 ! 53 ! 59 ! 58 ! !	25 33 35 32 30	8.1 12 13 12 13	8.7 12 14 15 14	.74 1.7 3.2 4.8 5.1	.56 .26 .34 .33 .28	! ! .023 ! .011 ! .008 ! .006 ! .007 !	1.17 1.06 1.12 1.08 1.15	.017 .010 .008 .007 .009	! ! 4.9 ! 4.6 !10.0 ! 8.1 ! 3.6 ! 4.5 ! 5.8 ! 5.8 ! 3.0	16 20 20 20		.40 .48 .83 .91	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
!	Depth metres	10 1 1)rg.((W&) % 10!	C !Tot B)! ! 5C!@ 1	.N ! !Ac % ! LO5C!	Ext id F mg @ 1	r. P Bicar J/kg 105C	b.! !	HC1 K meq 1050	1CaC 1 1 1	12 E K mg/k 105	xtr! P 1 g 1 C 1	Fe	DT Mn	PA-ext Cu mg/kg @ 105C	r. Zn	! I B !SO4 !	Extrac 4S NO3 mg/ @ 10	table ! N NH4N !Bu kg !Ca 5C !	aff ap @	P ! Equil! ug/L! 40C !	Alt CEC	ernative Cat Ca Mg I m.eg/100g @ 105C	ions ! la K ! !
! !-	B 0.10	1	0.0	81	.07 !	13	6 	!	.44	1		!	41	66	1.3 0	.4 	!		!		! 			! !!

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.
| SOIL TYPE: 2Ugk
SITE NO: S3B | SUBSTRATE MATERIAL:
CONFIDENCE SUBSTRATE IS PARENT MATERIAL: |
|---|---|
| A.M.G. REFERENCE: 514 150 mE 7 813 050 mN ZONE 55 | |
| | SLOPE: |
| GREAT SOIL GROUP: Grey clay | LANDFORM ELEMENT TYPE: Plain |
| PRINCIPAL PROFILE FORM: Ug3.2 | LANDFORM PATTERN TYPE: |
| SOIL TAXONOMY UNIT: | |
| FAO UNESCO UNIT: | VEGETATION |
| | STRUCTURAL FORM: Mid-high open woodland |
| TYPE OF MICRORELIEF: Normal gilgai | DOMINANT SPECIES: Eucalyptus alba, Eucalyptus tessellaris |
| VERTICAL INTERVAL: .10 m | |
| HORIZONTAL INTERVAL: 12 m | ANNUAL RAINFALL: |
| COMPONENT OF MICRORELIEF SAMPLED: Depression | |
| SURFACE COARSE FRAGMENTS: No coarse fragments | |
| | |

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Periodic cracking

HORIZON	DEPTH	DESCRIPTION
ASb	0 to .09 m	Greyish yellow-brown (10YR4/2) moist, light grey (2.5Y7/1) dry; few fine distinct brown mottles; silty clay; weak 2-5mm angular blocky secondary; dry; moderately weak.
B21	.09 to .45 m	Yellowish grey (2.5Y4/1) moist; few fine distinct pale mottles; light medium clay; strong 2–5mm angular blocky secondary; moderately moist; very firm.
B22	.45 to .94 m	Yellowish grey (2.5Y4/1) moist; medium clay; strong 5-10mm angular blocky secondary, parting to moderate 100-200mm lenticular tertiary; moderately moist; very firm; few medium ferromanganiferous nodules.
B23k	.94 to 1.05 m	Dark greyish yellow (2.5Y4/2) moist; medium clay; very few small pebbles, subrounded quartz; strong 2-5mm angular blocky secondary, parting to weak 20-50mm lenticular tertiary; moist; moderately weak; few coarse carbonate nodules, very few medium manganiferous nodules.
D1	1.05 to 1.57 m	Brown (10YR4/4) moist; few fine faint grey mottles; medium clay; few small pebbles, subrounded quartz; strong 2-5mm angular blocky secondary; moist; moderately firm; few medium carbonate nodules, very few medium manganiferous nodules.
D2	1.57 to 1.78 m	Brown (10YR4/6) moist; few fine distinct grey mottles; light medium clay; common small pebbles, subrounded quartz; strong 2-5mm angular blocky secondary; moderately moist; moderately firm; few medium manganiferous nodules.

! Dept ! ! metr !	h ! : es ! !	1:5 So pH @ 4	bil/Wate EC Cl dS/m 9 DC @10	r !P	artic CS FS @	le Si S % 105C	ze! C ! (!	Exch CEC Ca m.e	Cat Mg eq/10 105	ions Na Og C	к	! Total ! P !	Elen K % @ 800	ents S	! No: ! ADM ! !	istures 33* 1500 % @ 105C	1D: *1	isp.Ratic R1 R2 @ 40C	e! Exch Exch EC ! Al Acid ! m.eg/100g ! @ 105C	EC ! pH ! !CaCl2! ! ! !@ 40C!
B 0.1 0.10 0.20 0.30 0.60 0.90 1.20 1.50 1.80		5.0 5.8 5.5 5.6 5.0 7.5 8.6 8.5 8.5 8.1	.02 .00 .03 .00 .02 .00 .05 .00 .33 .04 .42 .05 .59 .07 .56 .06 .33 .04	1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 ! 1 !	4 19 5 12 4 13 4 13 7 14	36 4 34 4 34 5 28 5 25 5	1 ! 9 ! 1 ! 5 ! 5 ! 1 !	21 6.3 25 10 24 9.2 27 13 31 15	4.1 6.4 6.7 9.6 12	.37 1.4 2.4 4.2 5.0	.38 .22 .19 .21 .22	1 .021 1 .014 1 .009 1 .007 1 .016	1.21 1.11 1.08 1.15 1.50	.011 .009 .008 .007 .006	! 2.8 ! 3.0 ! 4.9 ! 3.8 ! 4.2 ! 9.1 ! 5.0 ! 3.4	14 19 19 19	1111111	.57 .85 .89 .92	1 1 1 1 1 1 1 1 1 1	
Dept metr	h 101 es 1 10	rg.C (W&B) % 105C	Tot.N % @ 105C	E Acid	xtr. Bica mg/kg 105C	P! rb.! !@	HC1 1 K 1 meq%1 105C1	CaCl2 K mg/l @ 10	Extr! P ! xg ! 5C !	Fe	DT Mn 147	PA-extr Cu Z mg/kg @ 105C	n I	! E !S04 ! !	xtrac S NO31 mg/1 @ 10	table ! N NH4N !B kg !Ca 5C !	uff ap @	P! Equil! ug/L! 40C !	Alternative CEC Ca Mg m.eq/100 @ 105C	Cations ! Na K ! g !

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 2Dda SITE NO: S4 A.M.G. REFERENCE: 511 530 mE 7 818 030 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Ddl.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Tussock grassland DOMINANT SPECIES

ANNUAL RAINFALL:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRACMENTS: Very few small pebbles, subangular unspecified coarse fragments

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting

HORIZON	DEPTH	DESCRIPTION
A1	0 to .03 m	Dark brown (10YR3/4) moist; clay loam,fine sandy; massive; dry; moderately firm.
A2sb	.03 to .06 m	Dull yellowish brown (10YR5/3) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; clay loam,fine sandy; massive; dry; moderately firm.
B21	.06 to .35 m	Brownish black (2.5Y3/2) moist; medium clay; strong 5–10mm angular blocky primary, parting to moderate 50–100mm lenticular secondary; dry; moderately strong.
B22	.35 to .68 m	Dark olive (2.5Y3/3) moist; medium clay; very few small pebbles, subangular quartz; strong 5-10mm angular blocky primary; moderately moist; very firm; very few medium carbonate nodules, very few medium manganiferous nodules.
D1	.68 to .90 m	Brown (10YR4/6) moist; medium clay; moderate 5–10mm angular blocky primary; moderately moist; very firm.
D2	.90 to 1.00 m	Brown (10YR4/6) moist; light clay; many small pebbles, subangular quartz; massive; moderately moist; moderately firm.
D3	1.00 to 1.14 m	Yellowish brown (10YR5/6) moist; light clay; weak 5–10mm angular blocky primary; moderately moist; moderately firm; many medium manganiferous veins.
D4	1.14 to 1.62 m	Dull yellowish orange (10YR6/3) moist; many medium distinct brown mottles; light medium clay; moderate 5–10mm angular blocky primary; moderately moist; moderately firm; common medium manganiferous veins.

11111	Depth metres	1 1 1 1	1:5 рН @	So d 40	il/ EC S/m C	Mater Cl % @105	1P 1 1 C1	art CS	icl FS @ 1	.e S S %	ize C	CEC	Exch Ca m.	. Ca Mg eg/1 10	tion Na 00g 5C	s K	! ! ! !	Total P	Ele K % @ 80	ments S C	1	Mois ADM 33	tures 3* 1500 % 105C	10 *1 !	isp. R1 @ 4	Ratio! R2 ! OC !	Exch Al	Exch ECEC Acid .eq/100g @ 105C	! pH ! !CaCl2! ! ! !@ 40C!
11111111	B 0.06 0.06 0.20 0.30 0.60 0.90 1.20 1.50	11111111	5.9 6.2 7.9 8.5 9.1 9.2 8.7 8.5	1	03 04 13 28 91 .1 70 63	.003 .003 .017 .039 .101 .151 .097 .112	! ! ! ! ! ! ! ! !	18 7 15 16 27	32 17 21 20 27	22 23 22 20 13	30 52 45 46 34	16 28 22 26 18	3.4 11 7.9 8.0 5.6	4.3 10 8.0 8.5 6.4	1.2 5.9 8.5 11 8.4	.22 .12 .13 .11 .15	! ! ! ! !	.017 .008 .007 .008 .011	.649 .634 .761 1.10 .789	.016 .022 .030 .016 .017	1	1.7 3.5 3.2 2.9 7.8 2.7 3.3	9 17 15 17	1 1 1 1 1	.68 .97 .97 .98	1 1 1 1 1 1 1			
1	Depth metres	! ! !)rg.((W&I % 105	C 1 B)! 1 5C1	Tot. 9 0 10	N ! !A s !)5C!	E cid	xtr Bi mg/ 10	P car kg 5C	b.! !	HC K mec @105	1 !Ca 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C12 K mg/) @ 105	Extr P sg SC	F	D? e Mor	1120 10 10 10 10 10 10	-extr Cu Z /kg 105C	'n	1 B !SO !	Ext 4S	tractal NO3N 1 mg/kg a 105C	ble ! NH4N !Bu !Ca !	off ap @	P Equi ug, 40C	! 11! /L! !	Alte CEC	rnative Cat Ca Mg N m.eq/100g @ 105C	tions ! Na K !
1 1-	B 0.06	!	1.0) !		07 1		4	4	!	.36	5 !		!	10	9 50	. (36.5	4	!			!			!			! !

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 2Dya SITE NO: S5 A.M.G. REFERENCE: 511 020 mE 7 815 320 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Dy2.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

DEPTH

TYPE OF MICRORELIEF: Normal gilgai VERTICAL INTERVAL: .05 m HORIZONTAL INTERVAL: 6 m COMPONENT OF MICRORELIEF SAMPLED: Nound SURFACE COARSE FRAGMENTS: No coarse fragments

PROFILE MORPHOLOGY:

HORIZON

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting

DESCRIPTION

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

DIMINIAN STRUCTURAL FORM: Low open woodland DOMINANT SPECIES: Eucalyptus alba, Grevillea striata

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

Alcb	0 to .03 m	Greyish yellow-brown (10YR4/2) moist, light grey (10YR7/1) dry, dry conspicuously bleached; clay loam; massive; dry; moderately firm.
A2sb	.03 to .08 m	Dull yellowish brown (10YR4/3) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; few fine distinct brown mottles; clay loam; massive; dry; moderately strong.
B21	.08 to .22 m	Greyish yellow-brown (10YR4/2) moist; few fine distinct brown mottles; medium clay; strong 2-5mm angular blocky primary; moderately moist; moderately firm.
B22	.22 to .89 m	Dark greyish yellow (2.5Y4/2) moist; medium clay; strong 2-5mm angular blocky primary; moderately moist; moderately firm; very few medium manganiferous nodules.
D1	.89 to 1.36 m	Yellowish brown (2.5Y5/3) moist; medium clay; moderate 5–10mm angular blocky primary; moderately moist; very firm; very few medium carbonate nodules.
D2k	1.36 to 1.63 m	Yellowish brown (2.5Y5/3) moist; few fine distinct yellow mottles; medium clay; moderate 5-10mm angular blocky primary; moderately moist; moderately strong; few medium carbonate nodules, few medium manganiferous veins.

	Depth metres	1	1:5 pH @	Soil EC dS/ 40C	/Water Cl m % @105	: !F ! ! !	Partic CS FS @	cle 5 % 10	Siz s C 5C	e! ! (!	ECEC	xch. Ca m.e	Cat Mg g/10 105	ion: Na Ng 5C	ĸ	!!!	Total P	Ele K & @ 8(ement S	s	No: Adm	isture 33* 1 % @ 105	s 500*	!Di: ! !	sp.R R1 @ 40	Ratio R2	Exct Al	Exch ECEC Acid a.eg/100g @ 105C	! pH ! !CaC12! ! ! !@ 40C!
	B 0.08 0.08 0.20 0.30 0.60 0.90 1.20 1.50	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ \end{array} $	6.3 6.5 7.1 8.3 8.6 8.6 8.7	.07 .12 .32 .53 .84 .92 .90 .88	.009 .014 .050 .082 .114 .125 .121 .112		7 27 4 14 3 14 3 17 4 18	7 2 4 2 4 2 7 2 3 2	2 42 0 64 3 61 5 58 1 54	111111111	24 35 37 34 32 30 32	5.5 10 9.8 8.8 8.2 7.9	10 16 17 16 15 16 15	2.3 5.3 6.8 9.4 9.8 10 9.4	.36 .26 .27 .28 .32 .41 .44	11111111111	.017 .008 .007 .006 .012	.82 .78 .78 .860 1.2	01. 7 01. 8 01. 7 01. 01 0. 01	.8 1 .4 1 .3 1 .1 1	3.2 4.3 4.4 4.5 3.8 3.7 3.7		14 20 20 19	! .1 ! .9 ! 1. ! .9 ! 1.	71 94 .0 98				
1.	Depth metres	10 1 1 1()rg.((W&H % 105	C !To 3)! ! 5C!@	t.N ! !A % ! 105C!		Extr. Bica mg/kg 1050	P arb	! H ! m !@1	Cl K eqt 05C	!CaC ! ! ! @	12 E K mg/k 105	xtr! P ! g !	Fe	D' Mi	TP n @	A-extr Cu Z g/kg 105C	In	1 B 19 1	E> 5045	trac NO31 mg/1 @ 10	table N NH4N kg 5C	! !Bu !Ca !	1 Ef 1 9 8 40	P Equi ug/ DC	! .1! 'L! !	Alte CEC	rnative Ca Ca Mg m.eq/100g @ 105C	tions Na K
1	B 0.08	!	0.8	3 1	.06 !		4	5	1.	35	!		!	63	8 8	4	1.4 .3	1	!				!			!			

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

VEGETATION

ANNUAL RAINFALL:

SOIL TYPE: 6Dba SITE NO: S6 A.M.G. REFERENCE: 511 900 mE 7 812 380 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Dy3.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRAGMENTS: No coarse fragments

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting

	-	
to	.14 m	Greyish yellow-brown (10YR4/2) moist; sandy loam; massive; moderately moist; moderately weak.
to	.21 m	Greyish yellow-brown (10YR5/2) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; sandy loam; common small pebbles, subrounded unspecified coarse fragments; massive; moderately moist; moderately weak.
to	.39 m	Greyish yellow-brown (10YR5/2) moist; common medium prominent yellow mottles; sandy clay; common small pebbles, subangular quartz; moderate 5–10mm angular blocky secondary; moist; moderately firm; few medium manganiferous veins.
to	.76 m	Dull yellowish brown (10YR5/3) moist; few medium distinct brown mottles; sandy clay; few small pebbles, subangular quartz; strong 20-50mm angular blocky secondary; moist; moderately strong; very few medium manganiferous soft segregations.
to 1	.44 m	Dull yellowish brown (10YR5/4) moist, brown (7.5YR4/4) dry; light medium clay; few small pebbles, subrounded unspecified coarse fragments, few small pebbles, subangular quarts; strong 5–10mm angular blocky secondary; moist; very firm; common coarse carbonate nodules.
to 1	.76 m	Dull yellowish brown (10YR5/4) moist, brown (10YR4/4) dry; medium clay; very few small pebbles, subangular quartz; strong 2-5mm angular blocky secondary; moist; very firm; few medium carbonate nodules, very few medium manganiferous soft segregations.
	to to to to to	to .14 m to .21 m to .39 m to .76 m to 1.44 m

1111	Depth metres	1 1 1 1	1:5 pH @	Soil E(dS/ 40C	L/Wat C C /m @1	er 1 % .050	1Pa 1 (1	urti XS H	icl FS @ 1	e S S % 05C	ize C	1 1 C 1	EC EC	xch Ca m.(. Ca Mg eq/1 @ 10	tio N 00g 5C	ns a	ĸ	1 7 1 1 1	lota P	1 E] 1 9 6 8	Lem C B BOC	ents S	! ! !	Moi Admi	istu 33* @ 1	res 1500 % 05C	11)*1 1 1	Disp R1 @ 4	.Rat R 40C	io! 2 ! !	Excl Al	hE A m.e Q	xch cid q/10 105C	ECEC Og	! pH !CaCl ! !@ 40	! 2! ! C!
	0.10 0.20 0.30 0.60 0.90 1.20 1.50	1	5.9 6.0 6.9 9.9 9.8 10. 10.	.03 .03 .41 .70 .62 .54	0. 8 3 .0 1 .0 0. 0 2 .0 4 .0)03)03)67)73)73)49)42		i5 2 38 1 32 2 28 1 39 1 31 1	27 19 20 18 18	11 12 16 17 12 17	9 33 34 39 31 35	! ! ! ! !	4 13 15 19 15 17	0.5 2.5 3.0 3.1 2.6 3.2	0.5 4.0 5.0 6.2 4.2 5.2	0. 4. 9. 1 8. 1	1 0 5 0 7 0 3 0 6 0 0 0	.5 .1 .1 .2 .1 .2	1	.007 .009 .009 .010 .012	1.4 1.3 1.5 1.7	1 33 56 70 73	.008 .009 .024 .011 .010	!	0.6 0.9 2.8 3.3 5.4 4.3 5.3		3 10 19 19		.79 .86 .99 .99		! ! ! ! !					! ! ! ! !	
1.	Depth metres	10 1 1)rg.((W&) % 10	C 1TC B)! 1 5C10	st.N %	1 1Ac 1	Ex id @	tr Bio ng/1 10	. P car kg 5C	b.1	HC K me @10	1 ! 1%! 5C!	CaC e	12 K mg/l 10	Extr P Kg 5C	! ! ! !	 Fe	D'I Min	TPA- mg/ @ 1	exti Cu /kg 105C	r. Zn	В	! !SO !	Ext 4S	tract NO31 mg/) @ 105	tabl NNH Kg 5C	e ! 4N !E !(Suff Cap @	P Eqn ux 40C	! uil! g/L! !		Alto	ern C m.	ativ a eq/1 105	e Cat Mig 1 00g C	ions Ia K	-!
1	0.10	!	0.	5 1	.03	!	6	; 	4	!	.4	5 !				!	35	18	3 0.	2 0	.2		!			5 	!			!							-!

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Tussock grassland DOMINANT SPECIES

ANNUAL RAINFALL:

SOIL TYPE: 6Dda SITE NO: S7 A.M.G. REFERENCE: 509 640 mE 7 813 580 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Dd2.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRAGMENTS: No coarse fragments SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: 0.0 % LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Tussock grassland DOMINANT SPECIES

ANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting

HORIZON	DEPTH	DESCRIPTION
M 1	0 to .08 m	Brownish black (10YR3/2) moist; loam, fine sandy; massive; moist; very weak.
A2sb	.08 to .16 m	Greyish yellow-brown (10YR4/2) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; few fine distinct brown mottles; loam, fine sandy; massive; moist; moderately weak.
B2	.16 to .38 m	Brownish black (10YR3/1) moist; common fine distinct brown mottles; light medium clay; strong 5–10mm angular blocky secondary; moist; very firm.
B3	.38 to .64 m	Brownish black (10YR3/1) moist; many very coarse prominent grey mottles; light medium clay; strong 5-10mm angular blocky secondary; moist; very firm; few medium carbonate nodules, very few medium manganiferous nodules.
D1	.64 to .79 m	Dull yellowish brown (10YR4/3) moist; light clay; very few small pebbles, subangular quartz; moderate 2-5mm angular blocky secondary; moderately moist; moderately firm; few medium carbonate nodules, very few medium manganiferous nodules.
D2	.79 to 1.34 m	Dull yellowish brown (107R5/4) moist; few fine distinct yellow mottles; medium clay; very few small pebbles, subangular quartz; strong 10-20mm angular blocky secondary; moderately moist; very firm; very few medium manganiferous soft segregations.
D3	1.34 to 1.75 m	Dull yellow (2.5Y6/3) moist; common fine prominent red mottles, common medium distinct yellow mottles; light clay; few small pebbles, subangular quartz; strong 5-10mm angular blocky secondary; moderately moist; very firm; very few medium manganiferous veins.

11111	Depth metres	! ! !	1:5 pH @	Soil, EC dS/t 40C	/Waten Cl 1 % @105	r 1 1 5C1	Par CS	tic FS	le : %	Size C	≥! ! (!	ECEC	Ca m.	. Ca Mg eq/1 @ 10	tion Na 00g 5C	ns K	1	Tota] P	l El K & @ 8	ement S OC	s ! ! !	Moist ADM 33 @	ures * 1500* % 105C	10 11 1)isp.1 R1 @ 4(Ratio R2 OC	Excl	h Exch ECEC Acid n.eq/100g @ 105C	! pH ! !CaCl2! ! ! !@ 40C!
. ! ! ! ! ! ! ! !	$\begin{array}{c} 0.10 \\ 0.20 \\ 0.30 \\ 0.60 \\ 0.90 \\ 1.20 \\ 1.50 \end{array}$	1 1 1 1 1	6.3 7.5 8.9 9.6 9.4 9.2 9.2	.02 .05 .20 .74 .54 .51 .56	.002 .002 .007 .094 .068 .074	2 1 2 1 7 1 1 1 3 1 1 1 3 1 1 1	27 23 25 33 31 30	33 30 27 30 31 29	17 16 15 10 11 11	23 34 34 30 28 32	1 1 1 1 1 1	10 16 19 15 16 19	1.9 6.9 7.3 4.4 4.7 5.6	2.9 6.2 7.9 5.0 5.4 6.7	0.3 2.9 7.2 5.3 5.8 6.9	0.	2 ! 1 ! 1 ! 1 ! 1 !	.014 .007 .009 .010 .012	.84 .81 1.1 1.1 1.1	7 .00 3 .00 3 .01 2 .00 0 .00	9 ! 8 ! 2 ! 4 ! 8 !	2.0 3.5 3.8 5.4 4.0 4.1 4.9	6 11 13 9	1 1 1 1 1 1 1	.74 .88 .91 .82				
1- 1 1 1 1	Depth metres	10 1 1 1()rg.((W&H % 105	: !To! 3)! ! 5C!@ 1	.N ! !! % ! .05C!	Aci	Exti d B: mg, @ 1(r. I icai /kg)5C	? rb.!	HC Me 1010	21 eq% 05C	CaC	12 K mg/l 10	Extr P Kg 5C	! ! F !	e I	DTP Mn 0	A-extr Cu Z mg/kg 105C	'n	B 1S(Ex 04S	tractab NO3N N mg/kg @ 105C	le ! H4N !Bu !Ca !	off ap @	P Equi ug/ 40C	! il! /L! !	Alte CEC	ernative Cat Ca Mg M m.eg/100g @ 105C	ions ! la K !
!	0.10	1	0.8	3 !	05 !		5	-	7 1	1.2	21	!			! 7	3	53	0.6 0.	.3	1		1	!			!			1

 \star -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 6Dye SITE NO: S8 A.M.G. REFERENCE: 511 060 mE 7 812 210 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Dy3.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

SLOPE: LANDFORM ELEMENT TYPE: Prior stream LANDFORM PATTERN TYPE:

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

VEGETATION STRUCTURAL FORM: Mid-high open woodland DOMINANT SPECIES: Eucalyptus alba, Eucalyptus tessellaris, Eucalyptus polycarpa

ANNUAL RAINFALL:

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Firm

SURFACE COARSE FRAGMENTS: No coarse fragments

HORIZON	DEPTH	DESCRIPTION
A1	0 to .21 m	Brown (7.5YR4/3) moist; loamy sand; massive; moist; very weak.
A2sb	.21 to .36 m	Dull yellowish brown (10YR5/3) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; loamy sand; massive; moderately moist; very weak; few medium ferromanganiferous nodules.
A3	.36 to .44 m	Bright yellowish brown (10YR6/6) moist; sandy clay loam,fine sandy; very few small pebbles, subangular quartz; weak 5-10mm angular blocky secondary; moderately moist; moderately weak.
B21	.44 to .73 m	Yellowish brown (10YR5/8) moist; common fine prominent red mottles, few fine distinct brown mottles; light medium clay; very few small pebbles, subangular quartz; moderate 5–10mm angular blocky secondary; moist; moderately firm.
B22	.73 to .89 m	Yellowish brown (10YR5/6) moist; common medium prominent red mottles; medium clay; moderate 5-10mm angular blocky secondary, parting to weak 20-50mm lenticular tertiary; moist; very firm; very few medium manganiferous nodules.
B31	.89 to 1.27 m	Dull yellowish brown (10YR5/4) moist; many medium prominent red mottles; medium clay; very few small pebbles, subangular quartz; strong 5–10mm angular blocky secondary, parting to weak 20–50mm lenticular tertiary; moderately moist; moderately strong; few medium manganiferous nodules.
B32	1.27 to 1.70 m	Dull yellowish brown (10YR5/4) moist; very few medium distinct red mottles; mediumn clay; strong 5-10mm angular blocky secondary, parting to strong 20-50mm columnar tertiary; dry; moderately strong; common medium manganiferous veins.

! De ! ! me	epth etres	1 1	pH e	Soil EC dS/ 40C	L/Wat C (/m (2)	ter 21 % 105C	!Par ! C! !	rtic S FS @	cle 5 5 % 105	Siz C	e! 1 (!	ECEC	xch. Ca m.e	Ca Mg g/10	tion Na DOg 5C	ns a K	1	Tota P	1 E	lem K % 80C	ents S	! ! !	Noistu ADM 334 @ 1	ures * 1500* % 105C	1D	nisp.H R1 @ 40	Ratio R2 DC	Exc Al	h Exc Aci m.eq/ @ 10	h ECEC d 100g 5C	! pH ! !CaCl2! ! !@ 40C!
B 0 0 0 0 0 0 1 0 1 1 1 1).10 .10 .20 .30 .60 .90 .20 .50		5.2 5.9 5.5 5.5 5.6 3.0 3.6	.02 .04 .02 .01 .03 .08 .16	2 .(4 .(2 .(1 .(3 .(3 .(5 .(4 .(001 001 001 003 012 020 030	! ! 4 ! 4 ! 1 ! 1 ! 1 ! 1 ! 1	4 42 1 41 7 21 3 33 0 39	2 12 1 13 3 11 3 14 9 16	2 5 7 50 41 36	! ! ! ! ! !	4 3 18 16 16	1.2 0.9 6.2 6.4 8.4	0.6 4.5 4.6 5.7	.02 .04 1.0 1.5	2 .3 4 .2 5 .2 5 .3	3 21 29 29	.012 .012 .012 .013 .010	1. 1. 1. 1.	76 86 71 84 91	.007 .004 .008 .008 .005	1 1 1 1 1 1 1 1	1.7 1.4 1.3 3.1 2.2 2.5 3.3	3 3 19 16		.61 .66 .63 .77					
! De ! ! me	epth etres	101 1 1 1@	rg.C (W&E % 105	2 1To 3)1 1 5C10	ot.N % 1050	! !Ac !	Ext id i n @	tr. Bica g/kg 1050	P arb.	! H ! ! m !@1	C1 K eq% 05C	CaC	12 E K mg/) 105	xtr P g 5C	! ! !	fe	DTI Mn	PA-ext Cu ng/kg @ 1050	r. Zn	B	1 150 1	Ext 4S	tractab NO3N NI mg/kg @ 105C	le ! H41N !Bu !Ca !	uff ap e	P Equi ug, 40C	! il! /L! !	Alt CEC	ernat Ca m.eq @ 1	ive Ca Mg /100g 05C	tions Na K
! B (0.10	1	0.5	51	.03	!	5		3	! .	22	!			! 2	26	15	0.2 0	.4		!			!			!				

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SOIL TYPE: 6Dyg2 SITE NO: S9 A.M.G. REFERENCE: 511 690 mE 7 811 950 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Dy3.43 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRAGMENTS: No coarse fragments

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Prior stream LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Mid-high open woodland DOMINANT SPECIES: Eucalyptus polycarpa, Eucalyptus papuana, Grevillea striata

ANNUAL RAINFALL:

PROFILE MORPHOLOGY:

1 1-----

! 0.10 ! 0.4 ! .02 !

CONDITION OF SURFACE SOIL WHEN DRY: Firm

HORIZON	DEPTH	DESCRIPTION										
A1	0 to .14 m	Dark brown (10YR3/3) moist; sandy loam; massive; moderately moist; moderately weak.										
A2cb	.14 to .21 m	Dull yellowish brown (10YR5/3) moist, dull yellowish orange (10YR7/2) dry; sandy loam; common small pebbles, subrounded unspecified coarse fragments; massive; moderately moist; moderately weak.										
B21	.21 to .39 m	Yellowish brown (2.5Y5/3) moist; few fine distinct yellow mottles; medium clay; few medium pebbles, subrounded quartz; strong 5-10mm angular blocky secondary; moist; very firm; very few medium manganiferous soft segregations.										
B22	.39 to .70 m	Dull yellowish brown (10YR5/4) moist; medium clay; very few small pebbles, subrounded quartz; moderate 5–10mm angular blocky secondary; moist; very firm.										
B23	.70 to 1.04 m	Yellowish brown (10YR5/6) moist; medium clay; moderate 5-10mm angular blocky secondary; moderately moist; moderately strong; few coarse carbonate nodules, very few medium manganiferous soft segregations.										
D1	1.04 to 1.25 m	ellowish brown (10YR5/3) moist; common fine distinct brown mottles; clay loam,sandy; few pebbles, subangular quartz; weak 10–20mm angular blocky secondary; moderately moist; tely strong; common coarse carbonate soft segregations.										
D2	1.25 to 1.44 m	(7.5YR4/4) moist; sandy clay loam; very few small pebbles, subangular quartz; weak 10-20mm ar blocky secondary; moderately moist; moderately strong.										
D3	1.44 to 1.72 m	Brown (7.5YR4/4) moist; medium clay; strong 10-20mm angular blocky secondary; moderately moist; moderately strong; many coarse manganiferous veins.										
! Depth ! ! metre	n ! 1:5 Soil/Water ! ! pH EC Cl ! es ! dS/m % ! ! @ 40C @105C!	Particle Size! Exch. Cations ! Total Elements ! Moistures !Disp.Ratio! Exch Ecc ! pH ! CS FS S C ! CEC Ca Mg Na K ! P K S ! ADM 33*15000*! Rl R2 ! Al Acid !CaCl2! % ! m.eq/100g ! % ! % ! m.eq/100g ! ! % ! m.eq/100g ! % ! % ! ! m.eq/100g ! % % ! 0.55C ! @ 40C ! @ 105C ! @ 40C ! @ 105C ! @ 40C ! % ! 0.55C ! @ 40C ! @ 105C ! @ 40C !										
0.10 0.20 0.30 0.60 0.90 1.20	! 5.9 .02 .001 ! ! 6.2 .03 .002 ! ! 7.1 .35 .065 ! ! 9.7 .43 .050 ! ! 9.9 .61 .061 ! ! 9.7 .58 .079 ! ! 9.1 .52 .087 !	48 36 11 7 ! 3 0.6 0.6 0.1 0.2 ! .009 1.39 .007 ! 0.6 2 ! .86 ! ! ! 1 ! ! 0.6 ! ! ! ! ! 33 20 12 38 ! 15 2.2 5.3 5.7 0.1 ! .007 1.28 .012 ! 3.6 13 ! .92 ! ! ! ! 29 24 15 36 ! 15 2.7 4.9 8.6 0.1 ! .009 1.56 .016 ! 4.1 13 ! .99 ! ! ! ! 12 37 20 35 ! 19 2.8 6.4 13 0.2 ! .016 1.7 0.012 ! 5.3 17 ! .98 ! ! ! ! 12 39 24 28 ! 19 2.7 6.5 14 0.1 ! .019 1.76 .007 ! 5.0 ! ! ! ! ! 19 25 26 33 ! 20 2.9 6.9 14 0.1 ! ! ! 6.8 ! ! ! ! !										
! Depth ! ! metre	h !Org.C !Tot.N ! ! (W&B)! !Acid es ! % ! % ! !@ 105C!@ 105C! (Extr. P ! HCl !CaCl2 Extr! DTPN-extr. ! Extractable ! P ! Alternative Cations ! 1 Bicarb.! K ! K P ! Fe Mn Cu Zn B !SO4S NO3N NH4N !Buff Equil! CEC Ca Mg Na K ! mg/kg ! meg%! mg/kg ! mg/kg ! mg/kg !Cap ug/L! m.eg/100g ! 2 105C !@105C ! @105C ! @105C ! @40C ! @105C !										

! 33 26 0.2 0.2

3

!

1

!

۰.

4 ! .14 ! * -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

5

SOIL TYPE: 6Dyj2 SITE NO: S10 A.M.G. REFERENCE: 510 575 mE 7 811 550 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Db2.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRAGMENTS: No coarse fragments

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Firm

HORIZON	DEPTH	DESCRIPTION
A 1	0 to .04 m	Brownish black (10YR3/2) moist; sandy loam; massive; moderately moist; moderately weak.
A2sb	.04 to .11 m	Greyish yellow-brown (10YR5/2) moist, dull yellowish orange (10YR7/3) dry, dry sporadically bleached; sandy loam; weak 2-5mm angular blocky secondary; moderately moist; moderately weak.
B2	.11 to .27 m	Dull yellowish brown (10YR4/3) moist; common fine distinct yellow mottles; medium clay; very few small pebbles, subangular quartz; strong 2–5mm angular blocky secondary; moderately moist; moderately firm.
B3	.27 to .52 m	Brown (10YR4/4) moist; light clay; very few small pebbles, subangular quartz; moderate 5–10mm angular blocky secondary; moderately moist; moderately firm; very few medium carbonate nodules.
D1	.52 to .76 m	Dull yellowish brown (10YR5/4) moist; light medium clay; moderate 2-5mm angular blocky secondary; moderately moist; very firm; common coarse carbonate nodules, few medium manganiferous soft segregations.
D2	.76 to 1.31 m	Dull yellowish brown (10YR5/4) moist; light clay; few small pebbles, subangular quartz; moderate 5-10mm angular blocky secondary; moderately moist; moderately strong; few medium carbonate nodules.
D3	1.31 to 1.72 m	Brown (10YR4/4) moist; coarse sandy loam; massive; moderately moist; moderately firm; very few medium carbonate soft segregations.

1 ! ! !	Depth metres	1 1 1	1:5 pH @	Soil/ EC dS/m 40C	Water Cl % @1050	19ar 1 CS 1	tic FS @	le S %	Size C	CEC	Exch Ca m.e	Cat Mg eq/10	ion: Na Ng 5C	ĸ	1	Total P	Elen K % @ 800	nents S	!	Moisture: ADM 33* 1 % @ 1050	s 1 500*1 1 C 1	Disp.Ra R1 @ 400	tio! R2 ! !	Exch Exch ECEC Al Acid m.eq/100g @ 105C	! pH !CaC12 ! !@ 40C
! ! ! ! !	0.10 0.20 0.30 0.60 0.90 1.20 1.50	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.0 7.3 8.6 9.9 9.7 9.7 8.9	.13 .28 .44 .86 .79 .69 .48	.013 .039 .066 .078 .081 .074 .062	1 35 1 26 1 26 1 26 1 24 1 37 1 67	37 29 30 34 30 14	14 18 15 13 9 4	14 31 32 31 26 16	6 13 17 19 15 10	1.3 3.5 4.4 3.8 3.4 2.2	1.8 4.9 5.8 6.0 5.1 3.2	0.5 6.5 9.8 11 10 6.3	0.3 0.1 0.2 0.2 0.2 0.1	1	.010 .007 .012 .019 .017	1.28 1.16 1.51 1.72 1.76	.008 .016 .030 .009 .015		1.0 2.2 3.0 3.9 3.5 2.6 1.7	4 ! 10 ! 15 ! 14 !	.77 .93 .97 .96	1		1 1 1 1 1 1
1 1 1 1 1	Depth metres	10 1 1)rg.((W&H % 105	2 !Tot 3)! ! 5C!@ 1	.N ! !A % ! 05C!	Ext cid E mc @ J	r. 1 jica /kg .05C	p rb.	HC K me (@10	1 !Ca ! q%! 5C! (C12 K mg/l a 10	Extr P cg 5C	F	D e M	TPA n mg @	-extr Cu Z /kg 105C	n 1	! B !SC !	Ext 4S	tractable NO3N NH4N mg/kg 105C	! !Buf !Cap ! @	P f Equi ug/l 40C	1 1 1	Alternative Ca CEC Ca Mg m.eq/100g @ 105C	tions Na K
!	0.10	!	0.5	51.	04 !	6		7	.2	6 !			! 4	4 4	3 0	.4 0.	3	!		13	!		!		

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Tussock grassland DOMINANT SPECIES

ANNUAL RAINFALL:

SOIL TYPE: 6Dyj SITE NO: S11 A.M.G. REFERENCE: 510 090 mE 7 812 200 mN ZONE 55

GREAT SOIL GROUP: Solodic soil PRINCIPAL PROFILE FORM: Db1.33 SOIL TAXONOMY UNIT: FAO UNESCO UNIT:

TYPE OF MICRORELIEF: No microrelief SURFACE COARSE FRAGMENTS: No coarse fragments

PROFILE MORPHOLOGY:

CONDITION OF SURFACE SOIL WHEN DRY: Hard setting

HORIZON	DEPTH	DESCRIPTION
A1	0 to .07 m	Dark brown (10YR3/3) moist, greyish yellow-brown (10YR6/2) dry; few fine distinct brown mottles; sandy clay loam,fine sandy; massive; dry; moderately firm.
A2sb	.07 to .14 m	Dark brown (10YR3/3) moist, dull yellowish orange (10YR7/2) dry, dry sporadically bleached; very few fine distinct brown mottles; sandy clay loam,fine sandy; massive; dry; moderately firm.
B21	.14 to .31 m	Brown (10YR4/4) moist; fine sandy clay; strong 10-20mm angular blocky secondary; moderately moist; moderately strong.
B22	.31 to .44 m	Dull yellowish brown (10YR5/4) moist; fine sandy clay; moderate 5–10mm angular blocky secondary; moderately moist; very firm; very few medium carbonate nodules.
B23	.44 to .82 m	Dull yellowish brown (10YR5/4) moist; very few fine faint red mottles; fine sandy clay; weak 10-20mm angular blocky secondary; moderately moist; very firm; common medium carbonate nodules.
D1	.82 to 1.08 m	Yellowish brown (10YR5/6) moist; common fine distinct brown mottles; clay loam,fine sandy; weak 10-20mm angular blocky secondary; dry; moderately strong; few medium carbonate nodules, few medium manganiferous veins.
D2	1.08 to 1.72 m	Dull yellowish brown (10YR5/4) moist; few fine distinct brown mottles; sandy clay loam,fine sandy; weak 10-20mm angular blocky secondary; dry; moderately strong; many coarse manganiferous veins, few medium carbonate nodules.

! Depth ! ! metre:	! ! ! !	1:5 pH @	Soil/W EC dS/m 40C	ater C1 % @1050	!Par ! CS !	tic FS @	le S § 1050	ize C	CEC	Exch Ca m.e	Ca Mg eg/10 a 10	tion Na DOg 5C	s K	1	Total P	El K & 8	ement: S OC	3 1 1 1 1	Moisture: ADM 33* 15 % @ 1050	s ! 500*! : :	Disp R1 @	.Ratio R2 40C	Exc Al	h Exch ECEC Acid m.eg/100g @ 105C	! pH !CaCl2 ! !@ 400
0.10 0.20 0.30 0.60 0.90 1.20 1.50	! ! ! ! !	6.3 9.1 9.5 9.7 9.7 9.7 8.5	.03 .38 .53 .86 .81 .58 .79	.003 .024 .055 .093 .100 .085 .116	! 16 ! ! 15 ! 12 ! 12 ! 21	49 35 44 53 46	13 11 9 11 8	27 43 38 31 27	12 18 18 17 14 22	2.7 7.9 5.1 4.4 3.7 5.3	2.6 6.0 4.9 4.3 3.8 5.5	0.4 6.0 8.7 9.4 8.6 14	0. 0. 0. 0. 0.	3 ! ! ! ! ! ! ! ! ! ? !	.026 .012 .010 .016 .014 .017	1.2 1.0 1.3 1.6 1.6 1.8	4 .011 8 .011 2 .013 1 .020 8 .003 2 .003		1.8 4.3 4.1 3.7 3.2 3.1 4.0	7 ! 12 ! 13 ! 12 !	.85 .98 .97 .96				1 1 1 1 1 1
Depth metre	! ! ! !	Org.((W&I % @ 10	C !Tot B)! 5C!@ 10	.N ! !A % ! D5C!	Ext cid E mq @ 1	r. 1 Sicar J/kg .05C	P ! rb.!	HC K me @10	1 !Ca ! 18! 5C! (C12 K mg/1 @ 10!	Extr P kg 5C	! ! F !	e 1	DTP In 0	A-extr Cu Z g/kg 105C	in	B 150	Ex SAS	tractable NO3N NH4N mg/kg @ 105C	! !Buf !Cap ! (P f Eq 400	! puil! lg/L! !	Alt CEC	ernative Ca Ca Mg m.eg/100g @ 105C	tions Na K
0.10	!	0.9	9 ! .(07 !	9		8 !	.2	4 !			! 6	8 !	57	0.6 0.	3	!		3	!		!			

* -33kPa (-0.33bar) and -1500kPa (-15 bar) using pressure plate apparatus.

SUBSTRATE MATERIAL: CONFIDENCE SUBSTRATE IS PARENT MATERIAL:

SLOPE: LANDFORM ELEMENT TYPE: Plain LANDFORM PATTERN TYPE:

VEGETATION STRUCTURAL FORM: Tussock grassland DOMINANT SPECIES

ANNUAL RAINFALL:

APPENDIX III

IRRIGATED LAND SUITABILITY CLASSES, BURDEKIN RIVER IRRIGATION AREA

Five land suitability classes have been defined for use in Queensland, with land suitability decreasing progressively from Class 1 to Class 5. Land is classified on the basis of a specified land use which allows optimum production with minimal degradation to the land resource in the long-term.

- Class 1 Suitable land with negligible limitations. This is highly productive land requiring only simple management practices to maintain economic production.
- Class 2 Suitable land with minor limitations which either reduce production or require more than the simple management practices* of class 1 land to maintain economic production.
- Class 3 **Suitable land with moderate limitations** which either further lower production or require more than those management practices of class 2 land to maintain economic production.
- Class 4 Marginal land which is presently considered unsuitable due to severe limitations. The long term significance of these limitations on the proposed land use is unknown. The use of this land is dependent upon undertaking additional studies to determine whether the effects of the limitation(s) can be reduced to achieve sustained economic production.
- Class 5 Unsuitable land with extreme limitations that preclude its use.

Land is considered less suitable as the severity of limitations for a land use increase, reflecting either (a) reduced potential for production, and/or (b) increased inputs to achieve an acceptable level of production and/or (c) increased inputs required to prevent land degradation. The first three classes are considered suitable for the specified land use as the benefits from using the land for that land use in the long term should outweigh the inputs required to initiate and maintain production. Decreasing land suitability within a region often reflects the need for increased inputs rather than decreased potential production.

Class 4 is considered presently unsuitable or is used for marginal land where it is doubtful that the inputs required to achieve and maintain production outweigh the benefits in the long term. Additional studies are needed to determine whether the effect of the limitation(s) can be reduced to achieve sustained production.

Class 5 is considered unsuitable having limitations that in aggregate are so severe that the benefits would not justify the inputs required to initiate and maintain production in the long term. It would require a major change in economics, technology or management expertise before the land could be considered suitable for that land use. Some class 5 lands however, such as escarpments, will always remain unsuitable for agriculture.

^{*} Where more than simple management practices are required, this may involve changes in land preparation, irrigation management, the addition of soil ameliorants and the use of additional measures to prevent land degradation.

Limiting factor	Assumptions/ comments	Degree of limit soil/land attribu	ation in terms of ttes				Subclass for	various crop gro	ups			
PRODUCTIV	TTY FACTORS											
Nutrients -	All soils will require some	P alone very lo	w.							All crops		
n	fertiliser input. N assumed	•										
	to be always low. Minor	P and K very lo	ow or 2 to 3 time	8								
	elements can be added at	higher P plus Z	a required follow	/ing								
	low cost. S may be	exposure of hig	h pH (> 7.5 at							•		
	not supplied as	0.2 - 0.5 ш) за								60		
	superphosphate. Soil test											
	interpretations are those of											
	Bruce and Rayment (1982).											
Salinity -	Based on the relative salt			Field/Grain	crops		Sugar-cane			Small crops		
82	tolerance of a range of						•					
	plants expressed in terms of											
	1986). Subclass limits		Moderately			Verv	Moderately	Moderately	м	oderately toleran		Tolecont
	taken as 10 to 25% yield		tolerant	Tole	rant	tolerant	tolerant	sensitive		outracity toterail	μ	IOEIMIA
	reduction for subclass 2; 25											
	to 50% for subclass 3 and 50% for subclass 4		Maize	Sovheans	Sorohum	Catton		Reone	Tomatos	Cummber	Baalamalam	6h
	> 50% for subclass 4.		Kenaf*	Sunflower	oorginati	COROL		Deatts	Capsicum*	Pumpkin*	Rockmeion	Squash Zucchini
				Legume					Eggfruit*	·		2.44.4.Hill
				Sceds*								
		ECse(dSm ⁻¹)		Weighted pr	ofile mean to 0	.9 m			Weighted pro	file mean to 0.6	m	
		15-25										
		2.6 - 3.5	892					882	sa?			
		3.6 - 4.5	sa3				sa 2	sa4	583	sa2	582	
		4.6 - 5.5	sa 3				sa2	÷	sa 3	sa3	sa2	
		5.6 - 6.5	sa3	sa2			882		sa4	sa 3	sa3	sa2
		0.0 - 7.3	524 1	59.3 10.4	7		sa 3		÷	sa4	sa3	882
		9.1 - 10.0	•	584	58.2 eo 3		68.5			•	sa3	sa3
		10.1 - 12.5		•	sa4		5a.5 5a4				884 1	58.J
		12.6 - 17.0			+	sa2	+				•	
		> 17.0				sa 3						
						sa 4						

APPENDIX IV LAND SUITABILITY CLASSIFICATION FOR FURROW IRRIGATION OF SUGAR-CANE, GRAIN CROPS AND SMALL CROPS, BURDEKIN RIVER IRRIGATION AREA.

* Salt tolerance limits specific to these crops not available.

Legume seeds include mungbean, chickpea, pidgeon pea and dolichos.

Limiting factor	Assumptions/ comments		Degree of soil	limitation in term	s of			Subclass for var	tious crop groups		
Sodicity - so		ESP	or	Field	рН	Field/(Frain crops	Sugar-cane	······································	Small crops	· · · · · · · · · · · · · · · · · · ·
	Assessed on 0.2 to 0.3 m depth. ESP related to pH only for sodic duplex and cracking clay soils (Baker et al. 1983).			Clay soils	Sodie duplex soils	Sorghum, Cotton Legume seeds***	Maize, Sunflower, Kenaf, Soybean		Tomato	Eggfnuit Capsicum Beans**	Cucurbits
	Sodicity classes as per Northcote and Skene (1972) and Landon (1984).	< 6		< 8.0	< 6.5		so2			so3	so2
	Subclass limits taken as 10 to 25% yield reduction for subclass 2; 25 to	6 - 14		8.0 - 9.5	6.5 - 8.0	so2	s o3	so2	so2	so4 ↓	s o3
	50% for subclass 3 and $> 50\%$ for subclass 4. Subclasses so2 and so3	14.1 - 25		> 9.5	8.1 - 8.5	803	so4 ↓	s o3	s o3	•	so4
	not differentiated for less tolerant crops.	> 25			> 8.5	804		so4	so4		•

** Sodium tolerance limits unavailable for beans and legume seeds.

WATER MANAGEMENT FACTORS (Govern water distribution efficiency and trafficability)

Water	PAWC* based on measured or	Effective soil depth (m)	and/or	PAWC	All crops
availability	predicted values for major soils	(depth to rock or salt bulge)		(mm)	
- m	(Gardner and Coughlan, 1982). All				
	cracking clays known to have	0.7 - 1.0		75 - 100 mm	m2
	PAWC > 100 mm.			Non cracking clays; non sodic and weakly sodic duplex soils with medium	
				textured*** A horizons < 0.5 m deep; gradational and uniform medium	
	PAWC subclass limits relate to	0.45 - 0.6		textured soils.	
	irrigation frequency as follows:				
				50 - 75 mm	m3
	75 - 100 mm = 8 - 10 days,			Sodic duplex soils; duplex soils with coarse textured sandy loarn or coarser	
	50 - 75 mm = 5 - 8 days,	< 0.45		A horizons deeper than 0.5 m.	
	< 50 mm = < 5 days			,	
				< 50 mm	m4
				Uniform sands.	

* PAWC = Plant Available Water Capacity

*** Texture terms are as defined in Northcote (1979).

Limiting factor	Assumptions/ comments	Degree of limitation in	terms of soil/land attributes		Subclass for various	s crop groups	
Permeability- P	Refers to the permeability of the upper root zone of the soil profile. Affects trafficability and irrigation efficiency and also considers tolerance of crong to short periods of water-	(a) Soils with texture of sands or sandy loams to depths of:	All duplex soils with A or horizons finer than sandy loam with dry very firm or stronger B horizons at depths of:		All crops		
	logging.	0.3 - 0.5 m	0.2 - 0.4 m		p2		
		0.6 - 0.9 m	< 0.2 m		p3		
		> 0.9 m			р4		
		(b) Black earths and clays (U horizon textures of light prices and the set of light)	If and Ug profiles) with A medium clay and lighter and	Maize, Cotton, Kenaf Sunflower, Legume seeds	Soybean, Sugar-cane, Sorghum	Cucurbits, Tomato Capsicum, Eggfruit	Beans
		without mottling and/or t	seaching (Northcole 1979).	p2	p 2	p3	p4
		A horizon textures of me horizons that are mottled	dium to heavy clay and/or A and/or bleached.	p3	p2	p4	p 4
Soil complexity -	Refers to (i) a complex UMA where no component soil	B horizon permeability betwee	n soils similar:				
pd	exceeds 70% of the area and		A horizon features			All crops	
	(ii) any UMA less than 250 m width for grain crops and sugar cane and 100 m for small crops and a surrounding or adjacent in a surrounding or adjacent	Depth	Texture differences	Depth difference factor			
	UMA, depending on slope magnitude and direction. Based on a minimum irrigation run length of 250 m for sugar	depth of A of both soils < 0.2 m	1.5 - 2.0 texture ^{###} groups			pd2	
	cane and grain crops and 100 m for small crops. * Depth difference determined by multiplication.	depth of A of	1.5 - 2.0 or texture groups	1.5 - 2.0		pd3	
	** Texture groups as defined by Northcote (1979).	one soil > 0.2 m	> 2.0 and texture groups	for > 2.0		pd4	

B horizon permeability markedly different between soils:

pd4

Limiting factor	Assumptions/ comments	Degree of I	imitation in terms of soil/	land attributes		Subclass for	various crop groups
						Α	ll crops
Internal	Considers drainage of the whole	Moderately well to imperfectly drain	ed soils:				
Drainage - id	profile and the affects on crop growth and also losses to	clay soils, some non-sodic and weak	y sodie duplex soils eg.,	6Dyd, 6Drc.			id2
	groundwater. Terms used are those	Imperfectly to poorly drained soils:	odic duplex soils and hett	er drained soils underlai	in by name or		
	of (McDonald et al. 1984).	prone to the development of high no	r-saline water tables due t	to their position in the la	indscane and in		
		relation to adjacent soils eg. 5Dyb.		•			id3
	Soils considered as well drained						
	include 6Dra, 6Drb, 6Gnd and	Well drained soils acting as intake as	eas: red and yellow non-s	odic duplex soils eg. 5I	Dra, 5Dya.		
	6Uma.	Usually higher in the landscape, drai	nage losses may cause see	condary salinisation dow	nslope.		
		Special irrigation management and de	sign required eg. use of	overhead sprinklers or n	nodified furrow		
		irrigation techniques.					id4
		Very poorly or rapidly drained soils: respectively. Irrigation technique rea	gleyed duplex or coarse a stricted to trickle and drip	textured soils eg. 4Dga o methods.	or 6Ucc		id5
LAND SURFAC	E MANAGEMENT FACTORS						
Rockiness -	Based on field observation and	% Rock Outcrop (outcrop	and/or	% Pebble, cobb	le and stone	All crops with	Soybeans, Sugar-cane and
r	influence on machinery use (FAO,	and boulders > 600 mm).		on surface or w	rithin the upper	outcrop, cobble	Beans where stone and/or
	1983) and moisture availability.			0.45 m.		or stone on	cobble within upper
	.			6 - 60 mm or	60 - 600 mm	surface only.	0.45 m.
	Sizes relate to the class intervals in						
	McDonald et al. (1984). Soybeans,			2 - 10	< 2		r2
	sugar-cane and beans need to be						
	narvested closer to the soil surface	< 2		10 - 20	2 - 10	r2	r3

Rockiness - r	Based on field observation and influence on machinery use (FAO, 1983) and moisture availability.	% Rock Outcrop (outcrop and boulders > 600 mm).	and/or	% Pebble, cobb on surface or w 0.45 m. 6 - 60 mm or	ble and stone vithin the upper 60 - 600 mm	All crops with outcrop, cobble or stone on surface only	Soybeans, Sugar-cane and Beans where stone and/or cobble <u>within upper</u> 0.45 m
	Sizes relate to the class intervals in					during only.	<u>0.45 m</u> .
	McDonaid et al. (1984). Soybeans, sugar-cane and beans need to be			2 - 10	< 2		r2
	harvested closer to the soil surface than in the case of other crops.	< 2		10 - 20	2 - 10	r2	r3
	This incidence of rock and stone is	2 - 10		20 - 50	10 - 20	r3	r4
	considered more limiting when it occurs within the upper 0.45 m as	10 - 20		> 50	20 - 50	r4	r5
	repeated stone picking may be required.	> 20			> 50	r5	

Limiting Assumptions/ factor comments		Degree of limitation in terms of soil/land attributes	Subclass for various crop groups			
Slope - t	Slope limits should be used as a guide only as there have been very few studies on the influence of	(a) Sodie Duplex Soils Land slope %	All crops except Sugar-Cane	Land slope %	Sugar-cane	
	furrow flow velocity and furrow slopes and lengths currently in use to gauge erosion losses, furrow overtopping and wetting up times for various soils.	0.2 - 0.5	12	0.2 - 0.5	12	
	Suggested furrow slopes for sodic duplex soils in	0.06 -0.1 or 0.6 - 1.0	ß	0.06 - 0.1 or 0.6 - 2.0	t3	
	order of preference are: 0.1 to 0.2, 0.06 to 0.1 or 0.2 to 0.3; 0.3 to 0.5%.	< 0.06 or	14	< 0.06 or	•4	
	Suggested furrow slopes for other soils in order of preference are: 0.1 to 0.25, 0.06 to 0.1 or 0.25 to 0.5; 0.5 to 1.0%	2.1 - 4.0	ಚ	> 4.0	15	
	Furrow irrigation not recommended on slopes > 0.5% in the direction of irrigation for adding durks.	(b) Other Soils Land slope %		Land slope %		
	soils and 1% for other soils.	0.25 -0.5	12	0.25 - 0.5	t2	
		0.06 -0.1 or 0.5 - 2.0	ß	0.06 - 0.1 or 0.6 - 4.0	t3	
		< 0.06 or 2.1 - 4.0	t4	< 0.06 or > 4.0	t4	
		> 4.0%	ເວ			
Microrelief -	Gilgai vertical and horizontal interval related to the amount of levelling required.	(a) Cracking clay soils and sodic duplex soils with gilgai e.g. 2Dyc.	All crops			
-		Normal gilgai - vertical interval 0.1 to 0.3 m, area of mound > depression or area of mound and shelf > depression. or Linear gilgai	g 2			
		Normal gilgai vertical-interval 0.3 to 0.6 m or 0.1 to 0.3 m if area of mound $<$ depression.	g3			
		(b) Sodie duplex soils.	All crops			
		Vertical interval 0.05 - 0.1 m, A horizon depth < 0.15 m.	g3			
	Elongated mounds and depressions due to overbank flooding and deposition and other microrelief eg.	(c) All soils				
	debil debil.	Vertical interval 0.1 - 0.3 m 0.4 - 0.6 m > 0.6 m	g2 g3 g4			

78.

w

Limiting factor	Assumptions/ comments	Degree of limitation in terms of soil/land attributes						Subclass for various crop groups			
Surface condition - ps	Applies to soils with properties known to influence seed bed preparation and plant establishment eg. depth to hard, slowly nermeable sodic B	 (a) Cracking clay soils Percentage of dry a surface horizon > diameter: 	aggregates of 5 mm in								All crops except Sugar- Cane
	horizon, surface consistence and	24 - 45%									ps2
	potential to surface seal due to particle size distribution.	> 45%									ps3
	Cracking clay properties based on Coughlan and Loch (1984), and Gardner and Coughlan (1982).	(b) Other Soils Depth to slowly permeable sodic B horizon	And/or	Condition of surface soil when dry	And/or	Texture* of surface horizon	And/or	Grade of pedality	And/or	Consistence of surface soil when dry	
	Adaptation of various crops not accounted for, although it is recognised that some crops may	0.21 - 0.4 m		Firm or hardsetting		Sandy loarns to clays		Moderate or strong pedality		Moderately firm to very firm (3-4)	ps2
	be more difficult to establish e.g. soybeans, or have specific seed bed requirements.	0.1 - 0.2 m		Hardsetting		Sandy loams to clays		Massive or weak pedality		Moderately firm to very firm (3-4)	ps3
	 Textures as defined by Northcote (1979). Other terminology for surface properties are as defined by McDonald et al. (1984). 	< 0.1 m		Hardsetting		Sandy clay loams to clay loams		Massive or weak pedality		Moderately strong to very strong (5-6)	ps4
Wetness -		Areas remaining wet for	several months	, water remains on (the surface						All crops

for long periods and requires filling, special drainage or reclamation eg. small closed depressions.	w3
Areas which are wet for most of the year or pond water for	

considerable periods and require major drainage and reclamation works eg. swamps.

w4

Limiting factor	Assumptions/ comments		Degree of limitation in terms of soil/land attributes		Subclass for various crop groups
DEGRADATION FACTORS					
Erosion - c	Refers to slope limits on cleared fallow land or land irrigated during the wet season in terms of erosion risk only. Slope limits require substantiating with	(a)	 (a) Sodic duplex soils Land slope % 		All crops
	either measured or calculated soil losses for the soils of the area.		0.5 - 1.0	Shorter furrow lengths required and simple conservation practices eg. use of cover crops, contour cultivation.	¢2
	Note that any UMA with an eroded soil phase (E) is class 5.		1.1 - 2.0	Shorter furrow lengths required and simple conservation practices as above	
				as well as graded ballas to reduce stope length.	e3
			> 2.0	Not recommended for furrow irrigated crops.	c4
				Gully or stream bank erosion severe.	లు
		(b)	Other soils Land slope %		
			1.0 - 2.0	Shorter furrow lengths required and simple conservation practices e.g. use of cover crops, contour cultivation.	¢2
			2.1 - 4.0	Shorter furrow lengths required and simple conservation practices as above as well as graded banks to reduce slope	
			> 4.0	longth. Not recommended for furrow irrigated crops.	e3
				Gully or stream bank erosion severe.	ల్
Outflow potential -		Areas susceptible to the development of saline sceps, usually located downslope of permeable soils and confined by either		the development of saline sceps, usually of permeable soils and confined by either	All crops
		cond	uctivity.		ss4

REFERENCES

- Baker, D.E., Rayment, G.E. and Reid, R.E. (1983), Predictive relationships between pH and sodicity in soils of tropical Queensland, *Communications in Soil Science and Plant Analysis*, 14, 1063-73.
- Bruce, R.C. and Rayment, G.E. (1982), Analytical methods and interpretations used by Agricultural Chemistry Branch for soil and land use surveys, Queensland Department of Primary Industries Bulletin No. QB82004.
- Coughlan, K.J. and Loch, R.J. (1984), The relationship between aggregation and other soil properties in cracking clay soils, *Australian Journal of Soil Research*, 22, 59-69.
- FAO (1983). Guidelines: Land evaluation for rainfed agriculture, Soil Bulletin, 52, FAO, Rome.
- Gardner, E.A. and Coughlan, K.J. (1982), *Physical factors determining soil suitability for irrigated crop production in the Burdekin - Elliot River Area*, Queensland Department of Primary Industries, Agricultural Chemistry Branch, Technical Report No. 20.
- Landon, J.R. (ed.) (1984), Booker Tropical Soil Manual, A handbook for soil survey and agricultural land evaluation in the tropics and subtropics, Booker Agriculture International Limited.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984), Australian Soil and Land Survey Field Handbook, Inkata Press, Melbourne.
- Northcote, K.A. (1979), A Factual Key for the Recognition of Australian Soils, 4th edition, Rellim Technical Publications, Glenside, South Australia.
- Northcote, K.A. and Skene, D.J.M. (1972), Australian soils with saline and sodic properties, CSIRO Australia Division of Soils, Soil Publication 27.
- Shaw, R.J., Hughes, K.K., Dowling, A.J. and Thorburn, P.J. (1986), Principles of landscape, soil and water salinity - processes and management options, Part A in Landscape, soil and water salinity, Proceedings of the Burdekin regional salinity workshop, Ayr, April 1986, Queensland Department Primary Industries Publication QC 86003.

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes	Subclass	
PRODUCTIVITY	FACTORS			
Nutrients - n	N always low and applications of 180 kg N/ha for winter crops and 140 kg N/ha for summer crops required	P very low (Bruce and Rayment 1982) and applications of 5 to 10 kg/ha required.	n2	
		Applications of Zn as well as higher applications of P than above (up to 30 kg/ha) required when subsoils exposed after levelling have a pH greater than 7.5.		
Salinity -	Subclass limits taken as 10 to 25% yield	ECse (dSm ⁻¹) Weighted profile mean to 0.6 m 4.0 -5.0	sa2	
sa reduction for subclass 2; 25 to 50% for subclass 3 and > 50% for subclass 4 (Shaw et al 1986).	reduction for subclass 2; 25 to 50% for subclass 3 and $>$ 50% for subclass 4	5.1 -7.0	sa3	
	(Shaw et al 1986).	> 7.0	sa4	
		and/or		
		ECse (dSm^{-1}) (0 - 0.2 m)		
	regarded as toxic for rice seedlings. Subclass limits taken as ECse (dSm^1) values with the corresponding range of clay percentages.	> 7 > 4.9 > 2.8 (20 - 40%) (40 - 60%) (60 - 80%) Clay	sa4	
Sodicity - so	Assessed on 0.2 to 0.3 m depth. ESP related to pH only for sodic duplex and cracking clay soils (Baker et al. 1983).	ESP or Field pH Clay soils Sodic duplex soils		
	Sodicity closes on mar Northoats and Shane (1072) and	6 - 14 8.0 - 9.5 6.5 - 8.0	so2	
	Landon (1984).	14.1 - 25 > 9.5 8.1 - 8.5	so3	
		>25 > 8.5	so4	

APPENDIX V LAND SUITABILITY CLASSIFICATION FOR FLOOD IRRIGATION OF RICE, BURDEKIN RIVER IRRIGATION AREA.

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes	Subclass
WATER MANAGEM	TENT FACTORS		
Deep drainage - dd	Duplex soils with A horizons of < 0.2 m, moderately strong upper B horizons, textures in the clay range from the base of the A horizon to 1.5 m with alkaline soil reaction	Clay soils (Ug and Uf profiles) with clay textures extending to 1.5 m , neutral or alkaline soil reaction trend and/or ESP > 14 within the profile.	dd2
	trends and with $ESP > 14$ are considered the least permeable.	Duplex soils with A horizons of 0.2 to 0.4 m, moderately strong upper B horizons, textures in the clay range from the base of the A horizon to 1.5 m, alkaline soil reaction trend and ESP > 14 within the profile.	dd3
		As for dd3 but upper B horizons not moderately strong or all soils with alkaline soil reaction trend and textures coarser than sandy clay between 0.4 and 1.5 m.	dd4
		All gradational, uniform (excluding Ug and Uf soils) and other duplex soils with acid and neutral soil reaction trends or an alkaline soil reaction trend with ESP < 14 throughout or A horizons > 0.4 m.	
		or	
		Land with rock outcrop and/or soils with stone or cobble in the profile and/or BC or C horizon before 1.5 m.	dd5

83.

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes	Subclass
Soil complexity - pd	Affects water use efficiency and applies only to (i) a complex UMA where no component soil exceeds 70% of the area;	Adjacent UMA's and soil types within a complex UMA are suitable and within subclass 2 for all limiting factors.	pd2
	 (ii) a UMA less than < 10 ha with a minimum width of 250 m and adjacent UMA's*; (iii) the characteristics of individual soil profiles within a simple UMA 	As above but with subclasses of 3 for one or more limiting factors or Any suitable UMA < 10 ha and any one adjacent UMA is suitable.	pd3
	* Acceptable minimum size of a rice field is 10 ha with a minimum width of 250 m. If a small UMA (below these criteria) is unsuitable due to other limiting factors, a pd rating is not provided.	Any suitable UMA < 10 ha and the surrounding UMA is unsuitable or Any suitable UMA which contains some soil profiles with a dd rating of 4 or 5.	pd4

LAND SURFACE MANAGEMENT FACTORS

Rockiness - r	Based on field observation and influence on machinery use (FAO 1983). Sizes relate to the class intervals in McDonald et al. (1984).	Cover % of stone and cobble 60 - 600 mm	and/or	Cover % of pebble on surface 6 - 60 mm	
		2 - 10		10 - 20	r2
		10 - 20		20 - 50	r3
		20 - 50		>50	r4
		>50			r5

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes Su		
Slope - t	The upper slope limit is based on a ponding depth range of 0.05 to 0.2 m with a minimum bay	Land slope %		
	width of 30 m requiring only minor levelling. Slopes of 0.05 to 0.1% regarded as optimum. Major	0.1 - 0.25	12	
	levelling required on land with slopes between 0.5 and 0.75%. Land with a slope $< 0.03\%$ is considered	0.03 - 0.05 or 0.26 - 0.5	t3	
	too flat for flushing of bays.	0.51 - 0.75 or < 0.03	t4	
		> 0.75	۲۵	
Microrelief - Gilgai vertical and horizontal interval rel g to the amount of levelling required.	Gilgai vertical and horizontal interval related to the amount of levelling required.	(a) Cracking clay soils and sodic duplex soils with gilgai e.g. 2Dyc		
		Normal gilgai - vertical interval 0.1 to 0.3 m, area of mound > depression or area of mound and shelf > depression.		
		or Linear gilgai	g2	
		Normal gilgai - vertical interval 0.3 to 0.6 m or 0.1 to 0.3 m if area of mound $<$ depression	ø٦	
		(b) Sodic duplex soils	50	
		Vertical interval 0.05 to 0.1 m, A horizon depth < 0.15 m.	g3	
	Elongated mounds and depressions due to overbank flooding and deposition and other microrelief eg.	(c) All soils		
	debil debil.	Vertical interval 0.1 - 0.3 m	g2	
		0.4 - 0.6 m	g3	

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes	Subclass
DEGRADATION FAC Erosion - e	<u>CTORS</u> Note that any UMA with an eroded soil phase (E) is class 5.	Gully and streambank erosion severe.	e5
Outflow potential - ss		Areas susceptible to the development of saline seeps, usually located downslope of permeable soils and confined by either dykes or soils of heavy texture and very low hydraulic conductivity.	ss4

Note that any UMA with a wet soil phase (W) is class 4.

- Baker, D.E., Rayment, G.E. and Reid, R.E. (1983), Predictive relationships between pH and sodicity in soils of tropical Queensland, *Communications in Soil Science and Plant Analysis*, 14, 1063-73.
- Landon, J.R. (ed) (1984), Booker Tropical Soil Manual, A handbook for soil survey and agricultural land evaluation in the tropics and subtropics, Booker Agriculture International Limited.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984), Australian Soil and Land Survey Field Handbook, Inkata Press, Melbourne.
- Northcote, K.A. and Skene, D.J.M. (1972), Australian soils with saline and sodic properties, CSIRO Australia Division of Soils, Soil Publication 27.
- Shaw, R.J., Hughes, K.K., Dowling, A.J. and Thorburn, P.J. (1986), Principles of landscape, soil and water salinity - processes and management options, Part A in Landscape, soil and water salinity, Proceedings of the Burdekin regional salinity workshop, Ayr, April 1986, Queensland Department of Primary Industries Publication QC 86003.

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes		Subclass		
PRODUCTIVITY	<u>(FACTORS</u>					
Salinity - sa	Subclass limits taken as 10 to 25% vield reduction for subclass 2, 25 to 50% for	ECse (dSm ⁻¹) V	Veighted profile m	ean to 1.2 m	Mangoes	Avocadoes
	subclass 3 and $> 50\%$ for subclass 4. Subclass limits for manages and avocados from Shaw et al. (1986)		1.0 - 1.2		sa2	
			1.3 - 1.7		sa3	
			1.8 - 2.5		sa4	sa2
			2.6 - 3.7			sa3
			> 3.7			sa4
Sodicity - so	ESP levels refer to <u>any depth in the profile</u> - ESP related to pH only for sodic duplex soils and experime class (Baker at al. 1983). Sodiaity	ESP or	Clay soils	Field pH Sodic duplex soils	Во	oth crops
	classes as per Northcote and Skene (1972) and Landon (1984)	< 6	< 8.0			so2
		6 - 14	8.0 - 9.5	6.5 - 8.0		so3
		> 14	> 9.5	> 8.0		so4
Soil depth - d	Assessed on depth of soil for root proliferation and anchorage. Derived from Hackett and Carolane (1982), Nel (1983) and Capelin (1987).	Effective soil depth (depth to decomposing rock, pan or salt bulge).		or salt bulge).	Mangoes	Avocadoes
			1.51 - 2.0 r	n		d2
			0.61 - 1.0 n	n	d2	a3 d4

0.45 - 0.6 m

< 0.45 m

d3

d4

APPENDIX VI LAND SUITABILITY CLASSIFICATION FOR LOW VOLUME IRRIGATION OF MANGOES AND AVOCADOES, BURDEKIN RIVER IRRIGATION AREA.

Limiting factor	Assumptions/comments Degree of limitation in terms of soil/land attributes		Subclass	
Internal	Duplex soils with red to red-brown B horizons	Rapidly drained soils:	Mangoes	Avocadoes
id	considered the most suitable eg. 5Dra, 6Dra.	 Well to moderately well drained soils: (i) uniform medium, gradational and duplex soils with brown to vellow brown B horizons with soil to pourtel 	id2	id2
		soil reaction trends and ESP < 14 throughout eg. 6Dyd, 6Gnd, 5Dya. (ii) duplex soils with alkaline soil reaction trend with red to red-brown or brown to yellow-brown B horizons	id2	id3
		with less than 2% calcareous segregations above 0.75m and ESP < 14 throughout eg. 6Dyf, 6Drc. Imperfectly to poorly drained soils: Clay soils and other sodic duplex soils together with better drained soils prone to the development of high	id3	id4
		non-saline water tables due to their position in the landscape in relation to adjacent soils eg. 5Dyb. Very poorly drained soils: Gleved duplex soils eg. 4Dga and rapidly drained soils	id4	id5
		with a pan or seasonal water table above 1.5 m.	id5	id5

LAND SURFACE MANAGEMENT FACTORS

Rockiness	-
r	

Based on field observation and influence on machinery use (FAO 1983). Sizes relate to the class intervals in McDonald et al. (1984).

% Rock outcrop or boulder and stone (60-600 mm) on s	s (> 600 mm) and/or cobble surface or within profile.	Both crops
Outcrop or boulders	Cobble and stone	
> 600 mm	60 - 600 mm	
2 - 10	10 - 20	r2
10 - 20	20 - 50	r3
20 - 50	50 - 90	r4
> 50	> 90	r5

Limiting factor	Assumptions/comments	Degree of limitation in terms of soil/land attributes	S	Subclass
Wetness -		Areas with slopes of:	Mangoes	Avocadoes
w		> 2%		w2
		1.1 - 2%	w2	w3
		0.6 - 1%	w2	w4
		0.1 - 0.5%	w3	w4
		Areas with water remaining on the surface for several weeks and may require successive levelling eg. gilgaied cracking clays.	w4	w5
		Areas $< 0.1\%$ slope and/or areas remaining wet for several months which require major drainage and reclamation works eg. closed depressions and swamps.	w5	w5
DEGRADATION F	ACTORS			
Erosion - e	Note that any UMA with an eroded soil phase (E) is class 5.	Gully or streambank erosion severe.	Bo	e5
Outflow potential - ss		Areas susceptible to the development of saline seeps, usually located downslope of permeable soils and confined by either dykes or soils of heavy texture and very low hydraulic conductivity.		ss4

_

REFERENCES

- Baker, D.E., Rayment, G.E. and Reid, R.E. (1983), Predictive relationships between pH and sodicity in soils of tropical Queensland, *Communications in Soil Science and Plant Analysis*, 14, 1063-73.
- Capelin, M.A. (1987), Horticulture Land Suitability Study, Sunshine Coast, South East Queensland, Queensland Department of Primary Industries, Land Resources Bulletin QV 87001.
- FAO (1983), Guidelines: Land evaluation for rainfed agriculture, Soil Bulletin 52, FAO, Rome.
- Hackett, C. and Carolane, J. (1982), Edible horticultural crops a compendium of information of fruit, vegetable, spice and nut species, Academic Press, Sydney.
- Landon, J.R. (ed) (1984), Booker Tropical Soil Manual, A handbook for soil survey and agricultural land evaluation in the tropics and subtropics, Booker Agriculture International Limited.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1984), Australian Soil and Land Survey Field Handbook, Inkata Press, Melbourne.
- Nel, D.J. (1983), Soil requirements for avocado cultivation, Farming in South Africa, Avocadoes B.2, Department of Agriculture, Pretoria, South Africa.
- Northcote, K.A. and Skene, D.J.M. (1972), Australian soils with saline and sodic properties, CSIRO Australia Division of Soils, Soil Publication 27.
- Shaw, R.J., Hughes, K.K., Dowling, A.J. and Thorburn, P.J. (1986), Principles of landscape, soil and water salinity - processes and management options, Part A in Landscape, soil and water salinity, Proceedings of the Burdekin regional salinity workshop, Ayr, April 1986, Queensland Department of Primary Industries Publication QC 86003.

	La	ind Reso	urce D	ata		Com	non	Limit	ations	Suga	ir-C	ane	(S)			N	laiz	e(N	٩z)				Ric	e(R)	Limit	ati	ons	5			
UMA	С	Dom.ST	ST2	%ST2	ST3	n m	pd	id g	wess	rpt	so	sa	Su	lit.	. 1	os 1	t r	ря	so s	sa	Sui	t. I	n sa	so ss	rt	g d	d p	d	Sui	t.	Area
													l	S I	!			-			! M:	z !				-	•		! R	!!	ha
																				_											
1	N	2Dyb	2Dbb		2Ugi	33		3	2	32	2 3		!	3 !	!	3 2	2	3	4	2	! 4	! :	3	3	3				! 3	1	59.0
2	Ν	2Ugh	2Ugk			3	2	22		2	2		I	3 !	!	3		3	3		! 3	1	3	2		2	2		! 3	÷.	15.6
3	Ν	2Ugg	2Ugk			2	2	22		2			!	2	!	2		3	2		! 3	1.1	2			2	2		1 2	i i	17.1
4	Ν	2Ddb	2Dba		2Dyb	33	2	3	3	33	; 4	2	!	4 !	!	4 4	÷	3	4	3	! 4	! :	3	4	5		_		1 5	1	16.2
5	Ν	2Ugh	2Uge			3		22		2	2		!	3	!	2		3	3		! 3	1 3	3	2		2	2		13	i i	36.3
6	N	2Dyb	2DbdV			23	2	3	3	33	2		!	3	!	34	÷	3	3	2	! 4	1	2	2	5		_	3	15	i	6.5
7	Y	2Dyb	2Ugd	35	2DycV	23	2	32	2	33	2		ļ	3 !	ļ	33	5	3	3	2	! 3	1	2	2	4	2		2	14	. i	21.4
8	Ν	2Dba				33	2	3	2	33	5 4	2	ļ	4 !	!	4 3	5	3	4	3	! 4	! :	3	4	4			4	14	i	1.1
9	N	2Ugk	2Dyb		2Ugd	3	2	22		2	2		!	3 !	!	3		3	3		! 3	1	3	2		2	2	•	1 3	i	14.6
10	Ν	2Ddb	2Dyb		2Uge	33		3	2	33	5 4	2	!	4 !	!	3 3	5	3	4	3	4	1	3	4	4	-	-		i 4		17.0
11	N	2Ugd	2Uge		2Ugc	2		22		2			!	2 !	!	3		3	2		! 3	1	2		2	2	2		12	i	183.8
12	N	2Ugh				3		22		2 2	2		!	3 !	!	3 2	2	3	3		! 3	1	3	2	3	ž	2	3	13	i	2.1
13	N	2Ugk	2Uge			2		22		2	2		ļ	2 !		3		3	3		13	1	2	2	2	2	2	-	12	i	33.8
14	Ν	2Ugd				2		22		2			ļ	2		3		3	2		13	1	2	-	-	2	2	3	i 3	i	6.0
15	N	2Dda2				23	2	3		32	2		i	3 !	!	3 2	2	3	3	2	! 3	1	2	2	2	-	4	4	· 4		5 4
16	Ν	2Uge2	2Uge		2Ugc	2		22		2			Ì	2	1	3		3	2	-	i 3	1	2	-	2	2	4	2	14	i	15 4
17	Ν	2Uge	2Ugh		2Ugd	2		22		2	2		Ì.	2		3		3	3		i 3	1	2	2	2	2	•	•	13	i	43 7
18	Y	2Dyb	2Dda	40	2Ddb	33		3	3	33	3		Ì.	3		34		3	4	2	i 4	1	3	3	5	-			i 5	i	20.7
19	N	6Dyg4	6G			23		5		2 2	2		1	5 1		3 2	>	2	2	_	i 5	1	2	-	ž		5		15	i	۲.01 ۲
20	N	2Dbc2	2Dbc3			23	4	33		2 2			Ì.	4		3 2	>	ž	2		4	1	2		ž	3	<u> </u>	4	i á	i	17 1
21	N	6Dyg4	6DbaV			24	4	5	2	23			Ì.	5 1		3 3	5	2	2		i 5	i :	-		5	3	5	-	. .	i	12 7
22	N	2Dyb				23	2	3		3	2		i.	3 1		3		3	3	2	13	1	5	2	2		-	2	12	i	4 1
23	Ν	2Ugg	2Ugd			2		22		2	_		i.	2 1		2		3	2	-	13	i :	5	-	2	2	່ວ	-	i 2	i	22 1
24	N	2Dda2	2Dbb2			33	2	3		3	3		i.	3	1	3		3	4	2	i Z	1	3	3	2	-	2	4	i 4	1	7 0
25	Y	2Dya	2Dda	40	2Dyb2	33		3		3	2		i	3 (3		3	3	2		1	3	2	2		•	-	1 3		77 5
26	N	6Dba				23		3		3	4	2	i	4		3		3	4	3	i 4	1	5	2	2		5		1 5	i	12 7
27	N	2Ugd2	2Uad		2Uge2	2		2		2	-	-	i.	21	i i	3		3	2	-	iz	i	5	7	2				1 6	-	28 7
28	N	2Dvb	•		•	23		3		3	2		i	3 1	i	3		3	3	2	i 3	1	5	2	2		•	-	1 2	i	20.7
29	N	6Dba	6Dba3		6Dva3	23		3	2	33	4	2	i	<u>4</u> i	I	37	{	3	4	3		i i	5	2	4				· 2		75 7
30	N	2Dda2	2Dda		2Dvb2	23		3	-	32	2	-	i	3 1		3 2	5	ž	х х	2			5	2	7				: 4	-	79 1
31	N	6Dda2			,	23	2	3	2	33	2		i	31	•	37	ł	3	ž	2	. 3	1	-	2				4	: 4	-	16.1
32	N	6Dva3	6Dva		6Dva2	23	-	3	-	3	2		i	<u> </u>		3		z	4	2		1	5	7	2				: 4	;	10.2
33	N	6Dvi	6Dvi2		6Dva	33		3		32	4	2	i	4		6 2	,	z	7	ž		1 7	2 2	7	7			4	: 4 . /	-	17.2
34	N	6Dvb2			/3	22	4	22		22		-		4 1		3 2	-	2	-	5	· *		2	4	7	2	5		: 4	-	65.4
35	N	6Dba				23		3		3	· 4	2	1	4 1		3	•	3	4	τ.	- 6	1 1	-		2	c :		1.	2 3	-	5.0
													• • •						- .		· • •	: 4	-	+	<u> </u>			÷	: 4	:	7.8

APPENDIX VII. SUITABILITY OF EACH UMA FOR SUGAR-CANE, MAIZE AND RICE, HAUGHTON SECTION - STAGE 1, BURDEKIN RIVER IRRIGATION AREA.

UMA 	La C	nd Reso Dom.ST	urce Da ST2	ata %ST2	ST3	Comm nm	non	Limi	tations	Suga	ar-	Can	ne(S	5)			Mai	ze(Mz)				Ri	ce(R) Lim	ita	tio	าร			
UMA 36 37	С 	Dom.ST	ST2	%ST2	ST3	n m	nd	id a	-									-													
 36 37	 N						~~	IU Y	wess	r p	t s	o s	sa S	Suit	t.	ps	t r	p	so	sa	Sui	t.	n sa	so	ss r	t a	dd	pd	Su	it.	Area
36 37	 N						•	-		•			!	S	ļ	•					I M	Iz!				- 3		F	!	R!	ha
36 37	N																														
37		6Dyg				33		32		3		4	į	4	ŀ	3		3	4	2	! 4	. !	3	4		22		4	i	4 !	1.1
	N	2Ugd2	2Ugc			2		22	3	2			1	3	!	3		3	2		! 3	5 I	2			2	- 4	4	!	4 !	7.9
38	Y	6Dye	6Ucb	40	6Dyg3	23	4	42		2		2		4	!	2		2	3		! 4	1	2	2		22	5		!	5!	18.1
39	N	6Dyg2	6Dba2		6Dye	23		3		2 3	2	4	1	4	i	2	2	2	4	2	! 4	1	2	4		3	4	4	i	4 !	10.7
40	N	2Dda	2Dyb2		2Ddb	33		3		3	2	2	ļ	3	!	3	2	3	3	2	! 3	5 1	3	2		3	-		i	31	37.3
41	N	6Dbh				33		3		3		4	2 !	4	1	3		3	4	3	1 4	, i	3	4		2			i	<u> </u>	5.3
42	N	6Ucb				24	4	5		3				5	į	2		3			1 5		2	•		-	5		i	5 1	4 0
43	N	6Ucc				24	4	5		3	2			5	i.	_	2	3			1 5	i i	2			3	5		i	5 i	4.0
44	N	2Dvb2				23		3		3	2		i	3	i	3	2	3	2	2	13		2			3	á	4	i	<u> </u>	2 0
45	N	2Dvb				33		3		3		2	-	3	i	3	-	3	3	2	1 3		3	2			-	z	i	7 : 7 i	4 3
46	Ŷ	2Dva2	2Uae2	35	2Dba	33		3		3		3	21	3	i	3		3	ž	ž	1 4	í	z	7		2	1.	1.		5 : / 1	17 /
47	Ň	2Uge	2UghV	•••	20.00	3		22		2		•	<u> </u>	3	i	z		ž	2	2	רי ו ז		z	5		ົ່ວ	2	z	:	4 ! 7	1/ 9
48	Ŷ	2Dda2	20dh	30	20vb2	उँर		2			2	2	2 1	7		7	2	7	7	z	1 3		7	2		22	2	2	-		F2 /
40	Ň	2Uah	LUGD	50	20 9 02	3 3	2	22		2	2	2	<u>د</u> ا	7	i	2	2	z	7	5	: 3		J	2		ר ד	4	7	-	4 ! / i	7 5
50	v	6Dba	Anvi	30	Allch3	ך ד ד	-	2			2	L /.	2		÷	7	2	7		7	: 4		2 7	2		2 C 7	2	4		4 ! / .	3.5
51	Ň	60000	6Dvi	50	00000	ר ב ד ד	7	z			2	7	2 1	1	-	7 7	2	7	7	7	1 4		ר ב ר ב	7		2 7	,	4		4 !	30.0
52	N	2Upd	0091			2	2	2.2	7	2	2	4	4 1	- 4 - 7	-	7	۲.	7	-	5	1 7		2 2	4		۲ _	4	4 7	!	4!	15.8
57	N	2090				2	2	22	2	2				2	-	2		2	2		1 2		2			2	~	2	!	<u>.</u>	0.1
55	N	2090	4Dala 2			27	2	22	5	2				2	-	2		2	2		! 3		2			2	2	<u> </u>	!	5 !	6.7
24	N	6Dyt	600082	75		23	2	2		2		2		2	1	4		2	4	~	! 3		2	~			2	4	!	5!	9.4
55	T	obdaz	ovygz	22	ovda	23	2	2		2		<u> </u>	. !	2	!	2		5	5	2	! 3		2	2			4	4	!	4 !	13.3
20	N					23	~	32	-	2		4	2 !	4	!	5		5	4	5	! 4		2	4		22		4	!	4 !	3.7
57	N	ZUga				2	2	22	5	2		_		5		- 5		5	2	_	! 3		_			2		4	ļ	4 !	2.3
58	N	6Dda	<i></i>			23	2	32		5	_	2	_ !	3	i	3	_	3	3	2	! 3	5 <u>1</u>	2	2		22		4	ļ	4!	1.3
59	N	6Dyj	6Dyg3			33		3		3	2	4	3 !	4	!	3	2	3	4	4	! 4	· !	33	4		3			ļ	4 !	15.8
60	N	6Dda	6Dda2			23		3		3 3	2	2	i	3	i	3	2	3	3	2	! 3	5 I.	2	2		2	- 4	4	i	4 !	8.3
61	N	6Dyg2	6Dba		6Dye2	23		3		3 3	2	4	ļ	4	!	3	2	3	4	2	! 4	· !	2	4		3	- 4	4	!	4 !	15.6
62	N	6Dye	6Ucc			23	4	4		4 3	2	2	!	4	1		2	4	3		! 4	· !	2	2		2	5	4	!	5!	6.7
63	N	6Dba3	6Dba2		6Dye3	23		3		3 3	2	4	2 !	4	!	3	2	3	4	3	! 4	1	2	4		3	4		. <u>.</u> .	4 !	42.1
64	N	6Dya				23	4	4		3			. !	4	!			3			! 4	1	2			2	5		1	5 !	8.4
65	N	2Uge	2Dya			3		22		2		2	ļ	3	!	3		3	3		! 3		3	2		2 2			1	31	12.4
66	N	2Ugd	6Dyb2			2		22		2 2	2		!	2	!	3	2	3	2		! 3		2	-		32	2	4	i.	4 1	10.9
67	N	6Dyg2	•			23	4	3		2	2	4	ļ	4	Ì	2	2	2	4	2	14	i	2	4		3 -	4	Å	i.	4 i	0.8
68	N	2Ugk	2Ugc			3		2 2		2	2	2	i	3	i	2	2	3	3	-	13	i	3	2		32	2	-•		ż i	12 7
69	N	6Dda	6Dba3		6Gna3	23		3		3	2	3	i	3	i	3	2	3	4	2	i 4	i	2	3	:	ξ.	-			3 I	38 7
70	N	6Dvi				33	2	3		3	- ;	4	21	4	i	4	-	3	ż	3	 . 4	i	3 2	ĩ		5			1	4 1	0.4
		/J													•				-7				5 2	. *		-				+ !	0.0

	La	and Reso	urce D	ata		Comn	non	Limit	ations	Sugar	·-Ca	ne(S)			Maiz	e(M	z)				Ric	e(R) L	.imita1	tion	าร			
UMA	С	Dom.ST	ST2	%ST2	ST3	nm	pd	id g	wess	гpt	so	sa	Sui	t.	ps	t r	ps	os	a S	Suit	:. n	sa	so ss	rtg	dd	pd	Su	it.	Агеа
													! S	i					i	Mz	<u>:</u> !						!	R!	ha
71	N	6Dvq3				23	2	3		32	3		13	1	3	2	3	4	21	4	1 2		3	3				z 1	2 /
72	Y	2Ddb	6Ucb	40	2Dbb2	33	4	32		32	4	2	. 4	i	4	2	3	4	3 1	4	13		4	32	5	4		5 i	48.2
73	N	2Dda				23		3		32	2		! 3	i	3	2	3	3	21	3	12		2	2	2	3	1 7	31	2 8
74	N	6Dyj				33	4	3		32	4	2	į 4	İ	3	2	3	4	3 !	4	i 3	2	4	2		5	iż	4 1	3.1
75	N	2Dbb	2Dyb		6Dyg2	23	2	3		32	2		! 3	!	3	2	3	3	2 1	3	1 2	-	2	3		4	1	4 1	17 3
76	N	6Dyb			• -	23	4	22		3			! 4	Ì			3		- !	4	1 2		-	22	5	•	i '	5 1	5.5
77	N	2Dba				33		3		32	4	2	! 4	i	4	2	3	4	3 !	4	! 3		4	2	-		iz	4 1	11.6
78	N	6Ucb				24	4	5		4			! 5	ļ			4		ļ	5	1 2		•	2	5		1 5	51	4.5
79	N	2Dbb	2Dyb			23		3		32	2		! 3	i	3	2	3	3	2	3	1 2		2	3	-		13	31	13.6
80	N	2Dda	2Ddb2			33		3		3	3	2	! 3	ļ	3		3	4	3 !	4	! 3		3	2		4	iz	4 1	25.8
81	Y	2Ddb	2Dda2	30	2Dba	33		3		32	4	2	! 4	ļ	3	2	3	4	3!	4	! 3		4	3	4	•	iz	4 1	35.2
82	N	6Dyg				33		32		32	2		! 3	i	3	2	3	3	ļ	3	! 3		2	32		4	i	4 1	1.9
83	N	2Dyb				33		3		32	2		! 3	i	3	2	3	3	2 !	3	! 3		2	3			13	31	7.3
84	N	2Uge	2Dbe			3		22		22	2		! 3	i	3	2	2	3	ļ	3	! 3		2	32	2		13	3 i	12.1
85	Y	2Ddb	2Dda	30	2Dba	33		3		32	4	2	! 4	1	4	2	3	4	3!	4	! 3		4	3			1 4	4 1	55.7
86	N	2Dba				33		3		32	4	2	! 4	!	4	2	3	4	3!	4	! 3		4	2		4	14	41	2.1
87	N	6Dyb				23	4	2		32			! 4	ţ		2	3		ł	4	! 2			3	5		1.5	5 1	4.5
88	N	6Dyj3				33	2	3		32	4	2	! 4	l	3	2	3	4	3!	4	! 3	2	4	3		4	14	4 1	1.9
89	Y	2Uge	2Dyb	30		2		22		2			! 2	1	3		3	2	ļ	3	! 2			22	2	3	1.3	3 !	6.4
90	N	2Dba	2DbaV		2Dbb	33		3		3	4	2	! 4	i	3		3	4	3!	4	! 3		4	2			14	41	37.5
91	N	2Uge				2		22		2			! 2	1	3		2	2	ļ	3	! 2			22	2	3	1.3	3 !	5.2
92	Y	2Ugk	2Dba	35		33		32		2	4	2	! 4	i	3		3	4	3!	4	! 3		4	22	2	3	į Z	4 1	5.4
93	Y	2Uge	2Ugk	40	2Ugd	3		22		2	2		! 3	Į	3		3	3	ļ	3	! 3		2	22	2		1.3	3 !	47.4
94	N	2Ugk	2Uge		2Ugg	2		22		2			! 2	!	3		3	2	!	3	! 2			22	2		1 2	2 !	23.8
95	N	2UgdE							5				! 5	!					. !	5	!						1.5	5 !	1.6
96	N	2DbbE							5				! 5	!					ļ	5	!						1.5	5 !	3.3
97	N	2Dba2	2Dyb			33		3		32	4	2	! 4	!	3	2	3	4	3!	4	! 3		4	3	4	4	! 4	1	1.5
98	N	2Dyb				23		3		32	2		! 3	i	3	2	3	3	2!	3	! 2		2	3			! 3	5!	10.6
99	Y	2Ddc	2Ugi	30	2Dbb2	33	2	3		32	2		! 3	i	3	2	3	3	2!	3	! 3		2	3	2	4	! 4	11	10.8
100	N	2Dyb				33		3		32	2		! 3	Į	3	2	3	3	2 !	3	! 3		2	3			! 3	5!	12.0
101	N	2Dbb2	2Dyb2		2Ddc	33	2	3	2	33	3	2	! 3	!	3	3	3	4	3!	4	! 3		3	4	4		! 4	÷ !	21.4
102	N	2Ugh				3		22		2	2		! 3	l	2		3	3	!	3	! 3		2	2	2		! 3	5 I	23.6
103	N	2DbbE							5				! 5	!					!	5	!						1 5	5 !	7.3
104	N	2Dyb	2Dbb			23		3	2	33	2		! 3	!	3	3	3	3	2!	3	! 2		2	4		3	! 4	1	3.6
105	Ν	2Dba				33	4	3	3	33	4	2	! 4	I	4	4	3	4	3!	4	! 3		4	5			! 5	5 I	2.4

	La	nd Resou	urce Da	ata		Comm	non	Limita	ations	Suga	Ir-Ca	ane(S)		M	aize	(Mz))			Ri	ce(R) L	imi	tat	ion	s			
UMA	С	Dom.ST	ST2	%ST2	ST3	nm	pd	id g 🛛	e ss	rpt	so	sa	Su	it.	ps t	гp	so	sa	Sui	it.	n sa	so ss	r t	g (dd	pd	Su	it.	Area
													1 8	S !					! N	1z !							!	R !	ha
106	N	2Dbd	2Dbe			23		3		2 2	2		13	3 !	32	2	3		1.3	3 !	2	2	2		3		ı	31	21.7
107	N	2Dba	2Dba2		2Ddb	33	4	3	2	33	; 4	2	į 4	4 !	43	3	4	3	į Z	41	3	4	4		-	4	i	4 i	11.3
108	N	6Dyf3	60bd2		6Dyg	23		2	2	23	; 2		13	3 I	23	2	3		1.3	3 !	2	2	4		5		Ì	5 1	35.1
109	N	2Dyb2	2Dya2		2Dbd2	23		3		32	2		13	3 !	32	3	3	2	! 3	3 !	2	2	3		4		İ	4 !	22.7
110	N	2Ugh				3		22		22	2		1.3	3 !	22	3	3		1.3	5 !	3	2	2	2	2		I	3 !	26.9
11 1	N	2Dyb	2Dbd		2Ddb	33	3	3		32	23		13	3 !	32	3	4	2	į Z	41	3	3	3				İ	3!	17.7
112	N	2Ugf				2	2	22		2			1.2	2 !	3	3	2		1.3	<u>5</u>	2		2	2	2	3	!	3!	8.1
113	N	2Ddb	2Dyb			33	2	3		32	24	2	! 4	4 !	42	3	- 4	3	! 4	41	3	4	3				ļ	4 !	8.1
114	Y	2Uge	2Ugk2	35		2		22		22	2		1.7	2 !	32	3	2		1.3	5!	2		3	2	4		I	4 !	29.9
115	Y	2Uge	2Dyb	35	2Dyc	3	2	22		2	2		13	3 !	3	- 3	3	2	! 3	5 !	3	2	2	2	2		!	3!	25.8
116	N	2Dyb	2Dbb			33	2	3		32	23		13	3 !	32	- 3	4	2	! 4	41	3	3	3			3	i	3!	4.1
117	N	2Uge				2		22		2			1.1	2 !	3	- 3	2		1.3	5 !	2		2	2	2		!	2!	15.4
118	Y	2Ugk2	2Uga	40	2Dyb	3		22		2	2		13	3 !	3	- 3	3		1.3	5!	3	2	2	2	4	4	ļ	4 !	32.8
119	N	2Ugd	2Uge			2		22		2			1.1	2 !	3	3	2		1.3	5!	2		2	2	2		!	2 !	54.7
120	Y	2Ugh	2Dyb	40	2Ugg	3	2	22		2	2		13	3 !	3	3	3	2	! 3	3 !	3	2		2	2	3	!	3!	12.5
121	N	2Dba	2Dba2		2Ddb	33		3		3	4	2	! 4	4 I	4	3	- 4	3	! 4	4 I.	3	4					!	4 !	16.5
122	N	2Uge	2Ugk		2Dyc	3		22		2	2		13	<u>3</u>	3	3	3		1.3	5 !	3	2	2	2	2		1	3!	78.9
123	N	2Dbb				33	2	3		32	2 2		13	3 !	32	- 3	3		! 3	5 !	3	2	2			3	i	3!	4.5
124	Ν	2Ugh				3		22		22	2 2		13	<u>3</u>	32	3	3		! 3	5 !	3	2	3	2	2	3	!	3!	2.9
125	N	6Dba				23		3		22	2 2		! 3	3 !	22	2	3		1.3	5!	2	2	3		3		ł	3 !	15.1
126	N	6Dyg2	6Dyj2			33	2	3		3	4		! 4	4 !	3	- 3	4	2	! 4	÷ !	3	4			4		1	4!	3.2
127	N	2UgeE							5				! !	5!					! 5	5 !							1	5!	1.6
128	N	2DbaE					_	_	5				! !	5!					! 5	5 !							1	5!	1.4
129	N	2Dba				33	2	3		32	2 4	2	! 4	4 <u>!</u>	42	3	4	3	! 4	i !	3	4	2				!	4 !	6.2
130	Y	6Dba	6Dra2	40		23	4	3	2	33	2		! 4	4 !	33	3	3		! 4	÷ !	2	2	5			4	!	5!	11.2
131	N	2Ugh				3	2	22		22	2 2		13	3 !	22	- 3	3		1.3	5!	3	2	3	2	2	3	i	3!	5.7
132	N	2Dyb2	2Dyb		2Dbb2	33	_	3	2	33	2		! 3	5 !	33	- 3	3	2	1.3	5 !	3	2	5		4		!	5!	29.9
133	N	2Ugh				3	2	22		23	5 2		13	5 !	23	- 3	3		1.3	5 !	3	2	3	2	2	4	İ.	4 !	2.8
134	N	2Dya	2Uge		2Dda	23	_	3		32	2		! 3	5 !	32	3	3		! 3	5 !	2	2	3				1	3!	34.3
135	N	2Dya				23	2	3		32	2		! 3	5 !	32	3	3		! 3	5!	2	2	2			3	1	3!	6.9
136	N	6Dba2	- ·			23	4	3		2 2	2		! 4	÷ !	22	2	3		! 4	i I.	2	2	3		4		1	4!	1.1
137	N	2Dyb	2Dbd			23		3		3	2		1.3	5 !	3	3	3	2	! 3	5 !	2	2				3	!	3!	6.9
138	N	6Dyb				22	4	2		3			! 4	÷ !		3			! 4	1	2				5		!	5!	1.1
139	N	2Dya				33	_	3		3	3		! 3	5 I	3	3	4		! 4	1	3	3	2			3	!	3!	5.8
140	Y	2Ugh	2Dda	30		3	2	22		22	2		1 3	5 !	32	3	3	2	! 3	5 I	3	2	3	2	2	3	!	3!	2.7

C-Complex, ST-Soil Type, n-fertility, m-plant water availability, pd-soil distribution complexity, id-internal drainage, g-microrelief, w-wetness, e-erosion, ss-secondary salinisation, r-rockiness/stoniness, p-permeability, t-gradient, so-sodicity, sa-salinity, ps-soil surface conditions, dd-deep drainage. 95.

	La	nd Reso	urce D	ata		Commor	n Lin	nitations	Sugar	-Ca	ne(S)		Ma	ize(Mz)				R	ice(l	R) Limi	tat	ion	IS			
UMA	С	Dom.ST	ST2	%ST2	ST3	nmpo	d id	g w e ss	rpt	SO	sa	Suit ! S	!	ps t	гp	so	sa	Sui ! M	it. Iz!	n si	a so	ss r t	g	dd	pd	Su !	it. R I	Area ha
141	Y	2Ugh	2Ugg	30		3	2	2	22	2		! 3	Į	22	3	3		! 3	5 !	3	2	3	2	2		! :	<u>3</u> !	37.6
142	N	2Uge				2	2	2	2			! 2	!	3	3	2		! 3	5 !	2		2	2	2	3	13	3!	3.1
143	N	6Dyf				234	43		22			! 4	!	22	2	2		! 4	÷ 1.	2		3		5		1 1	5!	0.9
144	N	2Dda				232	23		32	2		! 3	I	32	3	3	2	! 3	5 !	2	2	3			3	1.3	3 !	1.2
145	N	2Dyb	2Dda		2Dbb	33 2	23	2	33	2		! 3	i	33	3	3	2	! 3	5 !	3	2	4				! 4	4 !	9.9
146	N	6Dra2				224	'		22			! 4	!	22	2			! 4	i 1.	2		3		5		1.1	5!	3.1
147	N	2Dda2				23 2	2 3	2	33	2		! 3	!	33	3	3	2	! 3	5 !	2	2	4		4		14	4 !	4.2
148	N	6Dyb3				234	+ 2		32			! 4	i	2	3			! 4	÷ 1	2		3		5		1	5!	2.2
149	N	6Gna2	6Uma2			224	•		_	_		! 4	ļ	2				! 4	÷ !	2				5		1 5	5!	5.1
150	Y	6Dba	6Dyg	40	6Dyd	33	3		3	2		! 3	i	3	3	3		! 3	5 !	3	2			5		1.5	5 !	12.6
151	N	6Dda				53	. 3	_	3	2		! 3	!	3_	3	3	2	! 3	5 !	3	2			5	4	!!	5!	2.1
152	N	6Dra2				224	• _	2	23		_	! 4	!	3	2		_	! 4	÷ !	2		5		5		!!	5!	3.4
155	N	6Dyj				334	4 3	2	33	4	2	! 4	!	43	3	4	3	! 4	• !	3 2	2 4	3			4	14	4 !	0.1
154	N	6Dyj				553	5 5	•	3	4	2	! 4	!	4	3	4	3	! 4	• !	3 2	2 4	2			4	14	4 I	1.4
155	N	6Dba2				234	+ 5	2	33	4	2	! 4	!	34	3	4	3	! 4	• !	2	4	5		4		1 5	5!	2.3
156	N	2000		75	22.1	55	2 3	5	55	2		! 3	!	34	5	3	-	! 4	• !	3	2	5	-			! !	5!	3.0
157	Т.	200a 2044	2UgK	32	2Dac	222	2 2	2 3	55	4		! 3	!	34	- 5	5	2	! 4		3	2	5	2			! !	5 !	7.4
150	N	2000	2090		ZUDa	22	23	3	2 2 2	3		! 3	!	54	5	4	2	! 4		3	3	5		_		! 5	5!	18.1
1/0	N	OURAZ				224	+		2	~		! 4	!	•	2	-		! 4		2	_			5		1 5	5!	2.5
100	N	oupa	2044		20	233))	`	2	2		! 3	!	2	2	5		! 3	5 !	2	2		-	3	4	! 4	÷ !	1.7
161	N	ZUGK	2000		zbya	27	, <u>,</u>	2	2	2		! 5	!	5	5	5		1 3	5 !	5	2		2	2	_	13	5!	94.8
162	N	4Dvi				23 4	+ 3		2	~	~	! 4	!	,	2	<u> </u>	-	! 4		<u> </u>	2	-		5	5	! :	5 !	1.4
144	N	20ba	20 46		2044	22	27		37	4	2	! 4	!	4	5	4	5	! 4		5 1	2 4	2				! 4		14.0
164	N	2008	2000		zbūa	22	2	2	2	4	2	! 4	!	4	2	4	5	! 4		5	4	_		-		! 4		24.8
165	N	2099 60vg				2 2 2	2	2	2	,		! 3	!	2	2	2	2	! 3		2	,	2	2	2		! :	5 !	4.1
147	N	4Dvi				2 2 2 4	נ ד נ		2	4	2	! 4	!	2	2	4	4	! 4		<u> </u>	、 4	2				! 4		5.5
149	N					2 2	2 3		2	4	2	! 4	!	2	2	4	2	! 4		5 6	2 4	2		~		! 4		5.0
140	NI NI	20yez				222	2 2		2	2		! 3	!	2	2	2		! 3		2	2	2		2		1 4	5 !	1.1
170	v	6Dva	60.00	40	20bb	23	, 7 , 7		2 2 2	7		: J /	:	22	2	2	2	: 3		2	7	7		2		1.5		2.1
171	Ň	6Dyi	JUYY	40	2000	22	- J - Z		2 2	2	2	: 4 : /	:	22	נ ד	4	2	: 4		<u> </u>	<u>د</u>	5		C	,	15		29.5
172	N	2065	2Ddb			22	- J - Z	2	2 2	4	2	: 4 : /	:	22	2	4	2	: 4		3 6	- 4	5			4	! 4		4.2
174	N	60002	EDUD			, , , , , , , , , , , , , , , , , , ,	2	2	22	4	2	: 4 : /	:	כ כ ד ד	2	4	2	: 4		37	4	4		,		! 4		11.2
17/	N M	6062	ADde		60.02	222		2	22	4		: 4 7	:	כ כ כ כ	2	4	2	: 4		2	4	4		4		! 4		8.0
175	N	21100	obud		obyez	2 3 3	2	2	2 3	2		: 3	:	23	2	2		: 3 : 7		2	2	4	h	4		! 4		25.7
						ے	<u>د</u>	_	ے 			: ८	:			۷		: 3		2		2	2	2		1 2	: !	2.6

	La	nd Reso	urce Da	ata		Com	non	Limi	tations	Sugai	r-Ca	ns(S)			Mai	ze(Mz)				I	Rice	(R) Li	mita	tior	าร			
UMA	С	Dom.ST	ST2	%ST2	ST3	nm	pd	id g	wess	rpt	so	sa	Sui ! S	it. 5 !	ps	tr	ър	so	sa	Sui ! M	it. Iz!	n	sa si	o ss r	tg	dd	pd	Su !	it. R !	Area ha
176	N	6Dyj_				33	2	3		32	4	2	<u>i</u> 4	÷ !	4	2	3	4	3	i 4	1	3	2	4	2			! (4 !	4.7
177	N	6Ucb3				24	4	5		4			! 5	5 !			4			! 5	5 !	2			2	5		1 !	5!	2.2
178	N	2Dbb	6Dba			33		3		3	2		! 3	5!	3		3	3		! 3	5 !	3	i	2	2			11	3!	9.0
179	N	6Dyb	a			23	4	2		3	_		! 4	• !			3			! 4	1	2				5		1 !	5!	0.7
180	Y	2Ugk	2Dyb	35	2Ugc	3		22		2	2		! 3	5 !	3		3	3		! 3	5 !	3	i	2	2	2		1	3 !	17.0
181	N	6Dba3	.			23		3		2	2		! 3	5 !	3		2	3		! 3	5!	2	i	2		3		! :	3!	0.8
182	Y	2Dbb	2Ugk	40		33		32		32	3		! 3	5 <u>!</u>	3	2	3	4		! 4	1	3		3	32	2		1	3!	5.6
183	N	6Dba				23	2	3		3	2		! 3	5 !	- 3		3	3		! 3	5 !	2	i	2				1.7	2 !	1.6
184	N	2Dyb	2Dbc			23		3		32	2		! 3	5 !	3	2	3	3	2	! 3	5 !	2	i	2	3	3		1.3	3 !	17.1
185	N	2Dda	2Dya		2Ddb	33		3		3	3		! 3	5 !	3		3	4	2	! 4	- 1	3		3	2			!:	3 !	95.6
186	N	2Ugk				3		22		2	2		! 3	5 !	- 3		3	3		1.3	5 I	3	i	2	22	2		! :	5 !	3.3
187	N	6Dba2				23	3	3		22	2		! 3	5 !	2	2	2	3		! 3	5 !	2		2	2	- 4		! 4	4 !	5.1
188	Ν	6Dyb2				22		2					! 2	21	2					! 2	2 !	2			2	5		!!	5!	16.2
189	N	6Uca	6UcbV			24		5		42			! 5	5 !		2	4			! 5	5 !	2			3	5		!!	5!	6.7
190	N	6Dda				23		3		2	2		1.3	5 !	3		2	3		! 3	5 !	2	1	2	2	3	4	14	4 I	4.6
191	N	6Dyf2	6Uma2			23		3		2	2		! 3	5 !	2	2		3		1.3	5 !	2		2	3	4		14	4 !	8.9
192	N	6Dba				23	3	3		22			1.3	5 I	2	2	2	2		! 3	5 !	2			3	3	3	13	5 !	2.1
193	N	2Sp							5				! 5	5 !						! 5	i Į							1 !	5!	1.3
194	Y	2Dda	2Dyb	45		23		3		32	2		1.3	5 !	3	2	3	3	2	! 3	5 !	2	1	2	2			1.2	2 !	7.0
195	N	2Dbb				23		3		32	2		! 3	5 !	3	2	3	3		1.3	5 !	2	1	2	2			1.2	2 !	1.7
196	N	2Ugk	2Dbc			3		22		22	2		! 3	5 !	3	2	3	3		! 3	5 !	3	1	2	32	2		1.3	5 I	16.0
197	N	2Dyb2	2Dyb			23		3		32	2		! 3	5 !	3	2	3	3	2	! 3	5 I	2	1	2	3	4		1.4	4 I	17.4
198	N	6DbbE	6Dbb2		6Uma				5				! 5	5 !						! 5	i !							1.5	5!	29.1
199	N	2Ugd											! 2	2 !						! 3	5 !							14	÷ !	0.8
200	N	2Ugd				2	2	22		2			! 2	2 !	3		3	2		1.3	5 !	2			2	2	4	14	÷ !	2.6
201	N	20ba	2Ddb		2Dbb	33		3		32	4	2	! 4	i !	- 4	2	3	4	3	! 4	1	3	4	•	3			14	41	21.4
202	Ν	2Ugd				2		22		22			! 2	2 !	3	2	3	2		! 3	i i	2			32	2		1.3	5 I	3.3
203	N	2DbaE							5				! 5	5 !						! 5	; !							1.5	5 1	2.0
204	N	2Dba				33		3	2	33	4	2	! 4	1	4	3	3	4	3	! 4	. !	3	4	•	5			1.5	5 İ	7.5
205	Ν	2Dba	2Dbb2		2Ugk	33		3		32	4	2	! 4	1	3	2	3	4	3	! 4	. !	3	4		3			14		25.8
206	Y	2Ugk	2Dya	45	2Dba	33		32		22	3		! 3	5 I	3	2	3	4		! 4	. !	3	3	5	3 2	4		i 4		23.5
207	Y	2Ugk	2Dbb	35	2Ugk2	3		2		22	2		! 3	5 !	3	2	3	3		! 3	i i	3	2	2	32	2		1.3	5 I	16.3
208	N	6Dba			-	23	2	3		32	2		! 3	5 !	3	2	3	3		! 3	5	2		2	3	3		1 7	5 1	0.9
209	N	2Uge				3		22		2			! 3	5 1	3	-	3	2		! 3	; i	3	-	-	2 2	2		i	ŝi	10.2
210	N	2Dda	2Dba		6Ddb	33		3		3	2		! 3	5 !	3		3	3	2	! 3	i i	3	2	2	2	-		1	5 1	12.1

APPENDIX VII	(CONT.)
--------------	---------

	La	nd Reso	urce Da	ita		Com	non	Limita	tions	Sugar	-Ca	ne(S)		Mai	ze(Mz)				Ric	e(R)	Limi	tat	ions			
UMA	С	Dom.ST	ST2	%ST2	ST3	n m	pd	id g w	e ss	rpt	so	sa	Sui	t.	pstr	p	so	sa	Sui	t. 1	n sa	so se	srt	a	dd pd	Su	nit.	Area
							•			•			! S	!	•	•			! M	z!					[1	R !	ha
211	N	6Dyi				33		3		3	4	2	14	1	3	3	4	3	14	۰ I	32	4	2				4 1	1 1
212	Y	6Ddb2	2Uge	35	6Dvi	33	3	32		3	ż	-	13	i	3	3	3	•	13	1	3	2	2	2	4	i	<u> </u>	5 2
213	Ŷ	6Dvq2	2Uge2	35	6Dvd2	33	3	3		3	2		13	i	3	3	3		 	1	5	2	2	-	Å	i	4 1	6.0
214	Ň	6Dba	6Dyq			23	-	3		2	2		 3	i	2	2	3		13	1	5	2	2		7 7	i	31	5 1
215	N	2Ugg	,,,			3		2 2		2	2		13	i	3	3	3		 	1	5	2	2	2	2	i	31	3.1
216	N	6Dyb				2 2		2	2	23	-		 	i	23	2	-		13	i :	5	-	5	-	5	i	51	2 4
217	Y	2Ugk	2Ugh	45	2Ugg	3		22	-	22	2		13	i	32	3	3		 	1	5	2	3	2	2	i	31	31 0
218	Ň	2Dba	2Ddb			33	2	3		32	4	2	i 4	i	42	3	4	3	i 4	1	ξ	Ā		-	-	i	5 : 7 1	/ 0
219	N	2Uah				3	_	2 2		2	2	-	i 3	i	3	3	3	•	 	1	ξ	2	2	2	2	i	7 1	26 5
220	Ŷ	2Dbb	2Uak	40	2Ddb	33	2	32		32	3		i 3	i	32	ž	4		ίŽ	13	ζ ζ	ž	ב ז	2	2	1	31	32 /
221	Ň	6Dvi				33	-	3		3	4	2		i	3	3	ż	3		13	, , ,	4	2	-	6	1	2 : 7 i	7.9
222	Ň	2Dva	2Dbb		2Ddb	33		3		3	ż	-	13	i	3	3	3	5	is	1	ζ -	2	2			:		18.0
223	Y	2Dva	2Ugk	40	20bb	33	2	32		3	2		13	i	3	3	3		13	1	, ,	2	2	2	2	:	31	50.0
224	Ň	6Dvb	6Dva		60ba	23	3	2		32	-		13	i	2	3	3		. 3	1	,	-	3	2	5	÷	51	16.0
225	Ŷ	2Dva	2Dda	35	2Ddb	33	-	3		32	3		. 3	i	32	3	4		. J	1	2	7	ך ב		2	i	י ג ג ג	217 0
226	Ň	2Dba				33		3		32	4	2	. ŭ	i	42	ž	4	3	i 4	1	ŝ	4	7				5 : 7 i	7.8
227	N	2Dda				33		3		32	2		iŻ	i	32	3	z	2	. .	i i	, ,	2	2					0.0
228	Ň	2Uge	2Uac			3		22		2	2		. 3	i	3	z	ž	-	: J 3	1 7	ξ	2	2	2	2	÷	J: 3 1	22 6
229	N	2Dba	3-			33		3		32	2	2	14	i	42	3	4	٦		1	, t	7		2	2	÷	5:	1.0
230	N	6Dvb				22	3	2		22	-	-	 	i	22	2	-	2	; ,		,	-	7		5	÷	51	2.0
231	Ŷ	2Ugd	2Dvb	40	2Uac	2	2	2	2	23				i	33	ž	2		: 3 3	1 1	-				2	:	2 :	0.5
232	Ň	6Dda2	6Gnb			23	2	3	-	32	2		. J	i	32	3	ž		. 3	1 3	5	2	7		~	:	4 : / i	2.7
233	N	2Uge	2Dbc		6Dvd	3	-	32		2	-			i	3	3	2		. 3	1 7	-	-	2	2	-	:		11 7
234	Ň	6Dvb	2Dda		,-	22	3	2		23			13	i	23	2	-		: 3 3	1 3	, ,		2	2	5	÷	51	4.6
235	Ŷ	2Dvb	2Uak	35	2Dbd	33	2	32		32	2		. 3	i	32	z	3	2	. J . J	1 7	-	2	2	2	2	i	י ב ז ז	/7.9
236	Ŷ	2Dba	2Ugk	35		33	2	3		32	4	2	. <u>.</u>	i	32	3	2	ž	14	1 3	, ,	2	2	2	2	÷	J: / 1	45.0
237	Ň	6Dvg				23	-	3		22	•	-	13	i	22	2	2	5	. . 	1 3	, ,	-	2			÷		0.0
238	N	2Dva2				23	3	3		32	2		. 3	i	32	ž	ž		: J 3	1 3	5	2	7				J: / 1	7.0
239	Ŷ	20bb	6Dve	40		23	3	3		32	2		. J . 3	i	32	z	7		: J 3			2	2		7	÷	4 : 7 i	2.0
240	Ý	2Dba	6Dvb2	45	6Dve2	33	ž	3		34	2	2		i	36	ž	7	7	: J /			7	5		5	-	5 ! E i	12.0
241	Ň	2Dda	20ba			33		3	2	37	2		ייד. ו ל	i		z	۲ ۲	2	+ Z	1 3	,	2	ן ג		4	:	 	4.4
242	N	6Dvb	60va			23	3	2		33	-		. J	i	23	ž	5	5	נ: דו	1	, ,	2	4 E		5	-	4 ! 5 i	0.0 4 4
243	N	20ba	2Ddb		2Dvb	3 3	2	3	2	ר ב ד ד	4	2		i	43	7	1.	z	: 5	1 7		1.	2		5	-	ינ גי	20.0
244	N	6Dve	2040		20,0	23	4	3	2	ן ב ג ג	-	-		:	יד ד ג	ך ג	2	J	: 4 /	1 1	,	4	4 E		5	:	4! 5!	29.9
245	N	2Uad				2	-	2	5	27		:		i	ر ح ح	7	2		: 4	: (-		5		2	-	9 ! 5 i	4.9
								_ - <i>-</i>					 	:			<u>د</u>		: J	: 4	•				۲	:		0.0

	La	nd Resol	urce Da	ata		Comr	non	Limit	ations	Su	gar-	Cai	ne(S)		۱.	laiz	te(M	z)				Rice(R)	Limi	tat	ion	S			
UMA	C	Dom.ST	ST2	%ST2	ST3	'nm	pd	id g	wess	гp	ts	io :	sa (Suit ! S	t. !	ps t	tr	ps	0 9	sa S !	Suit Mz	. n !	sa so s	srt	g	dd	pd	Sui ! R	t. !	Area ha
246	N	2Dva	2Dda		2Dyb	33		3		3	2	2		! 3	!	3 2	2	3	3		3	13	2	7				13	,	28.4
247	N	6Dba	6Dbd			23	3	3	4	2	5	2		5	i	2 5	5	2	3	i	5	12	2	5		3		i 5	i	1 1
248	Ŷ	2Dva	2Uad	40		23	_	32	-	3	2	-		3	i.	3 2	5	3	2	i	3	12	-	2	2	5		· 2	i	2 0
249	Ň	2DbdE	3-						5	-	-			5	i		-	2	-	i	5	· -						15	i	4.8
250	N	2UadF							5					i Ś	i					-	5	i						15	:	2.8
251	Ŷ	2Dba	2Ddb	45	2Dda	33		3	-	3	2	4	2	i á	i	4 2	>	3	4	3 1	4	I 3	4	7	:			1 4	:	/2 3
252	Ň	6Dbh	20 410			33		3	2	3	3	4	2	ιĂ	i	4	- -	z	4	31	Ž	13	7	7					:	42.5
253	N	6DvaF	6Dve					•	5	5	5	-	-	5	i	т.		3	-		5	1	-					15	÷	8.6
254	N	6Dda	/ -			23		3	-	3	2	2		īŠ	i	3 2	>	3	3		ž	i 2	2	7				13	:	0.0
255	N	2Dda				23		ž		3	-	2		. 3	i	3	-	ž	۲ ۲	21	ž	12	2	2	,			1 2	:	7.5
256	N	20vaF						2	5			-		 	i	5		5	5		5	1	L	~	•			: 2	;	11.3
257	N	60 vh3				22	2	2	ž	3	3				i	24	4	3			á	12		5		5		: 5	:	0.0
258	Ň	20bc				23	3	3	3	2	3	2			i	2	,	2	3		ž	· - 2	2	5		ž		15	:	2 /
259	N	2Uad	2Uac		2Uge	2	5	22	5	2	5	-		12	i	3	•	ž	2		ž	12	L		่ว	2		1 2	÷	71 0
260	N	20ba	2Ddb		2030	33		3	3	3	3	4	2		i	4	4	z	2	3 1	4	1 3	4	5		2		: 2	:	17 1
261	Ň	2Uak	2Uge			3		22	5	2	2	2	-	i 3	i	3 2	5	z	3		ž	13	2		2	2		: 3	:	11 0
262	N	20vb	20bb			23		3		3	2	2		13	i	3 2	5	ž	ž	21	ž	12	2	7		-		1 3		15 /
263	N	6Dvf	2000			23		3		2	2	2		. 3	i	2 2	5	2	3		3	12	2	7		5	5	: 5	÷	67
264	N	2Dbb	2Dba			33		3	2	3	3	2	2	. <u>.</u>	i	37	- र	3	4	3 1	4	13	2	7		2	2	1 4	÷	10.7
265	Ň	2Dda	2Dva		2Dbb	23		3	-	3	2	2	-	13	i	3 2	5	ž	۲ ۲	21	3	12	2	7					÷	26.6
266	N	2Dba	20ba2		2Dda	33		3	3	3	3	4	2	i 4	i	4		ž	4	3 1	4	 	2	5				15	1	24.4
267	N	2Uak	2Uge			3		22	•	2	-	2	-	i 3	i	3	•	ž	3		ž	13	2	-	่ว			13	ì	17 8
268	N	2Dvb	2Dbb			33		3	3	3	3	3			i	34		3	4	21	4	13	ž	5	5			15		0.0
269	N	6Dvd	2000			22	2	2	2		ž	2			1	37	τ ζ	5	-		Ť	12	5	5		5		15	÷	2.0
270	N	2Dba				33	-	3	2	3	3	4	2		i	4	ź.	3	4	3 1	4	13	6	7		,		1 6	;	17
271	N	6UacE						5	5		5	-	-	. T	i		•	5	-		5	: 5	-	-	,			1 5	÷	7.0
272	Ŷ	20bh	2Ddb	40	20vh	33		3	ž	7	٦	4	2		i	3/		7	7	3 1	1	: 1 3	1.	5				: 5	;	11 0
273	Ň	20bd	2Dvb		2Dda	23		ž	3	2	ž	2	-	י ד ו ד	i	21	Ī	2	- - 		7	: 3	2	5		z		1 5	-	70.2
274	N	20vh	20,0		Lbaa	27		3	2	7	2	2		: J 7	i	2 3	5	ž	7	2 1	7	: 2	2	2		J		: 7	-	JU.2
275	N	20da				23		3	3	ר ד	ž	2		ים דו	i	3/	-	3	ך ג	21	4	: 2	2	5				1 5	-	7.4
APPENDIX VIII SUITABILITY OF EACH UMA FOR CAPSICUMS AND MANGOES, HAUGHTON SECTION - STAGE 1, BURDEKIN RIVER IRRIGATION AREA.

C-Complex, ST-Soil Type, n-fertility, m-plant water availability, id-internal drainage, ps-soil surface conditions, t-gradient, g-microrelief, w-wetness, e-erosion, ss-secondary salinisation, pd-soil distribution complexity, r-rockiness/stoniness, so-sodicity, sa-salinity, d-soil depth, p-permeability.

121	N	2Dba	2Dba2	2Ddb	3	3	3	- 4		3	- 4	3	÷.	4 !	4	- 4	2	- 4	3	1	4		16.5
122	N	2Uge	2Ugk	2Dyc	3		2	3	2	4	4		Į.	4 !	3	3		4	4	1	4		78.9
123	N	2Dbb	-	•	3	3	3	3	2	3	4		1	4 !	4	4	2	4	3	i	4	!	4.5
C-C(omp	lex. S	-Soil Tvp	e. n-feri	tit	itv	·. m	ם-ו	lant water	availabi	ilit	v.	id	-in	ternal d	draina	ae.						
C-C	omp soi	lex, S	-Soil Typ ace condit	e, n-feri	il Tac	ity die	,π nt.	p-p מ	lant water -microreli	availabi ef.w-wet	ilit	:У, ss.	id e-	-in	ternal of sion. se	draina s-seco	ge, nda	, arv	s	ali	nis	sat	ion.
C-Co ps-s	omp soi	lex, S l surfa	I-Soil Typ ace condit	e, n-feri ions, t-g	til grad	ity die r-r	nt,	n-p g	lant water -microreli ess/stonin	availabi ef, w-wet	ilit tnes	y, s,	id e-	-in ero	ternal o sion, se	draina s-seco	ge, nda	, ary	sa	ali	nis	sat	ion,

	La	and Reso	ource Da	ata			(Capsicum	Cap) limi	tat	ions	2		Mango('Ma) Lim	itat	ione	
UMA	C	Dom.S1	ST2	%ST2	ST3	nm	id	ps t g	we	ss pd	r p	so	sa	Suit.	SO SS	r sa d	id w	Suit	. Area
													!	Cap!				!Mg	! ha
																			<u> </u>
62	N	6Dye	6Ucc			23	4	2		4	4	4		! 4 !	4		43	! 4	! 6.7
63	N	6Dba3	6Dba2		6Dye3	23	3	32			3	4	2	! 4 !	4	42	43	! 4	! 42.1
64	N	6Dya	20.00			23	4	7 7		4	3	,		! 4 !	-		23	! 3	! 8.4
CO 66	N N	2Uge 2Ugd	20ya 60yb2			2	2	3 2 2 3			4	4 7		141	5	42	44	! 4	12.4
67	N	6Dva2	00,02			23	3	22		4	2	4	2	141	4	4 2	43	14	1 0.9
68	N	2Ugk	2Ugc			3	2	222		-	4	4	-	141	3	3	44	14	12.7
69	N	6Dda	6Dba3		6Gna3	23	3	32			3	4		141	4	4 2	43	14	! 38.7
70	N	6Dyj				33	3	4			3	4	3	! 4 !	4	42	43	! 4	! 0.6
71	N	6Dyg3				23	3	32			3	4		! 4 !	4	42	43	! 4	! 2.4
72	Y	2Ddb	6Ucb	40	2Dbb2	33	3	422			3	4	2	141	4	42	43	! 4	! 48.2
73	N	2Dda				23	3	32		,	3	4	-	141	4	42	43	! 4	! 2.8
74	N	009J	20.46		40.472	22	2	22		4	2	4	5	! 4 !	4	42	45	! 4	! 5.1
75	N	2000 60vb	2090		obygz	23	2	32			כ ד	4		141	4	4 2	4 3	! 4	1 17.3
77	N	2Dba				33	3	42			7	4	3	141	4	4 2	63	1 4	1 11 6
78	N	6Ucb				24	5	4 6		4	4	-	3	151	-		23	13	· 4.5
79	N	2Dbb	2Dyb			23	3	32		•	3	4		141	4	42	43	14	! 13.6
80	N	2Dda	2Ddb2			33	3	3			3	4	2	141	4	4 2	43	14	! 25.8
81	Y	2Ddb	2Dda2	30	2Dba	33	3	32			3	4	2	! 4 !	4	42	43	! 4	! 35.2
82	N	6Dyg				33	3	322			3	4		141	4	2	43	! 4	! 1.9
83	N	2Dyb				33	3	32			3	4		141	4	42	43	! 4	! 7.3
84	N	20ge	20be	70	204-	5	2	522			5	4	2	141	5	5	44	! 4	! 12.1
60 86	T M	2000 200a	zuda	20	zuba	כ כ ד ד	כ ד	42			כ ד	4	2	141	4	42	43	! 4	! 55./
87	N	60vh				23	2	72			3	4	5		4	42	23	: 4	1 4 5
88	N	6Dvi3				33	3	32			3	4	3	141	4	42	43	14	1.9
89	Ŷ	2Uge	2Dyb	30		2	2	3 2			4	3	-	141	3	3	44	 . 4	. 6.4
90	N	2Dba	2DbaV		2Dbb	33	3	3			3	4	3	141	4	42	43	14	! 37.5
91	N	2Uge				2	2	32			3	3		! 3 !	3	3	44	! 4	! 5.2
92	Y	2Ugk	2Dba	35	_	33	3	3 2			4	4	2	141	4	42	44	! 4	! 5.4
93	Y	2Uge	2Ugk	40	2Ugd	3	2	3 2			4	4		141	3	3	44	! 4	! 47.4
94	N	2UgK	ZUge		ZUgg	2	2	52	F		4	5		141	3	5	44	! 4	23.8
95	N	20905							5					1 5 1				! 2	! .O 77
90	N	2000E	20vh			33	3	32	,		3	4	3		4	42	43	14	! J.J I 15
98	N	2Dvb	2070			23	3	32			3	4	2	141	4	42	43	14	10.6
99	Ŷ	2Ddc	2Ugi	30	2Dbb2	33	3	32			3	4		141	4	4 2	43	14	10.8
100	N	2Dyb	•			33	3	32			3	4		! 4 !	4	42	43	! 4	! 12.0
101	N	2Dbb2	2Dyb2		2Ddc	33	3	33	2		3	4		! 4 !	4	42	42	! 4	! 21.4
102	N	2Ugh				3	2	22	_		4	4		141	3	3	44	! 4	! 23.6
103	N	2DbbE	201-1			2 7	7	7 7	5		7	,		! 5 !	,			! 5	! 7.3
104	N N	2090				2 3	כ ד	5 5 6 6	2		5 z	4	z	: 4 ! /	4	42	42	14	! 5.6 2 /
105	N	200a 20bd	20be			23	3	32	5		2	4	2	: 4 : I 4 I	4	42	42	14	! 2.4 I 217
107	N	2Dba	2Dba2		2Ddb	33	3	43	2		3	4	3	. . . 141	4	42	42	14	· 11.3
108	N	6Dvf3	6Dbd2		6Dyg	23	2	23	2		2	4	•	141	3		32	13	35.1
109	N	2Dyb2	2Dya2		2Dbd2	23	3	32			3	4		141	4	42	43	! 4	22.7
110	Ν	2Ugh	•			3	2	222			4	4		! 4 !	3	3	44	! 4	! 26.9
111	N	2Dyb	2Dbd		2Ddb	33	3	32			3	4		141	4	42	43	! 4	! 17.7
112	N	2Ugf				2	2	3 2		2	4	3	-	141	3	2	44	! 4	! 8.1
113	N	2Ddb	2Dyb	75		53	3	42			3	4	2	! 4 !	4	42	43	! 4	! 8.1
114	Y	2Uge	2Ugk2	55	201-	2	2	522			4	5		14!	5	5	44	! 4	! 29.9
115	T N	20ge 20vh	2090	22	ZUYC	ר ז ז	2	3 2 3 2			4 7	4		:4! 	4	42	4 3 4 7	! 4 /	! ∠⊃.8 I ⁄.1
117	N	20,00	2000			2	2	3 2			4	+ ~			3	7 4 4	4 5	: 4 4	: 4.1 15 /
118	Ÿ	2Uak2	2Uqa	40	2Dvb	3	2	3 2			4	4		141	3	3	44	. .	1 32.8
119	Ň	2Ugd	2Uge		, -	2	2	3 2			4	3		141	3	-	44	! 4	54.7
120	Y	2Ugh	2Dyb	40	2Ugg	3	2	32		2	4	4		! 4 !	4	42	44	! 4	12.5
121	N	2Dba	2Dba2		2Ddb	33	3	4			3	4	3	141	4	42	43	! 4	! 16.5
122	N	2Uge	2Ugk		2Dyc	3	2	32			4	4		! 4 !	3	3	44	! 4	! 78.9

101.

	La	nd Reso	ource Da	ata			c	Caps	icur	n(Cac) Limi	tati	ions	5		Mango	(Ma) Lin	nita	ti	ons	
UMA	C	Dom.ST	ST2	%ST2	ST3	nm	id	ps	tg	we	ss pd	гр	so	sa	Suit.	SO SS	r sa d	id	W	Suit.	Area
															!Cap!					!Mg !	ha
124	Ν	2Ugh				3	2	3	22			4	4		141	3	3	4	4	! 4 !	2.9
125	N	6Dba	(5.10			23	3	2	2			2	4	~	141	4	4 2	4	3	141	15.1
120	N		90YJ2			2 2	3	3		5		3	4	2	141	4	4 2	4	5	141	5.2
128	N	20geE 2DbaE								5					151					: J : ! 5 !	1.4
129	N	2Dba				33	3	4	2	-		3	4	3	141	4	42	4	3	! 4 !	6.2
130	Y	6Dba	6Dra2	40		23	3	3	3	2		3	4		141	4	4 2	4	2	! 4 !	11.2
131	N	2Ugh	20.4		20442	3	2	2	22	2		4	4		! 4 !	3	3	4	4	! 4 !	5.7
132	N	20 y 02 21 a h	2090		20002	33	2	2	32	2	2	4	4		141	4	42	4	۲ ۵	: 4 : 4	29.9
134	N	2Dya	2Uge		2Dda	23	3	3	2		-	3	4		141	4	42	4	3	i 4 i	34.3
135	N	2Dya	-			23	3	3	2			3	4		! 4 !	4	42	4	3	! 4 !	6.9
136	N	6Dba2	001			23	3	2	2		4	2	4		! 4 !	4	42	4	3	! 4 !	1.1
137	N	2Dyb 6Dyb	20bd			23	2	5			4	5 7	4		141	4	42	2	5 र	! 4 ! 3	6.9
139	N	2Dva				33	3	3			-	3	4		141	4	42	4	3	141	5.8
140	Ŷ	2Ugh	2Dda	30		3	2	3	22			4	4		141	4	4 2	4	4	4	2.7
141	Y	2Ugh	2Ugg	30		3	2	2	22			4	4		141	3	3	4	4	! 4 !	37.6
142	N	2Uge				2	2	3	ຸ 2		,	4	3		! 4 !	3	3	4	4	! 4 !	3.1
145	N	60yt 20da				23	נ ד	2	2		4	23	2		141	3 4	42	<u>د</u>	s z	1 4 1	0.9
144	N	2Dua 2Dvb	2Dda		2Dbb	33	3	3	3	2		3	4		141	4	42	4	2	141	9.9
146	N	6Dra2				22	-	2	2		4	2			141				3	131	3.1
147	N	2Dda2				23	3	3	3	2		3	4		! 4 !	4	42	4	2	! 4 !	4.2
148	N	6Dyb3	(IIma 2			23	2	2	2			3			131			2	3	! 3 !	2.2
149	N Y	60ha2 60ha	60maz 60va	40	6Dvd	22	3	3				3	4		141	4	42	4	4 3	! 4 ! 4	12.6
151	Ň	6Dda	0079	40	0074	33	3	3				3	4		141	4	4 2	4	3 4 .	2.1
152	N	6Dra2				22			3	2		2			131				2	2 1	3.4
153	N	6Dyj				33	3	4	3	2	4	3	4	3	! 4 !	4	42	4	2	! 4 !	0.1
154	N	6Dyj 6Dba2				55	5 7	4 7		2	5	5 7	4	5	141	4	42	4.	5	! 4 ! 4	1.4
155	N N	20baz				23	3	2	4	3	2	3	4	2	141	4	42	4	2	. 4 ! 4	2.5
157	Ŷ	2Dda	2Ugk	35	2Ddc	33	3	3	42	3	3	3	4		141	4	42	4	2	141	7.4
158	N	2Dbb	2Dyb		2Dba	33	3	3	4	3	2	3	4		! 4 !	4	42	4 ;	2	! 4 !	18.1
159	N	6Dra2				22	-	~			4	2			! 4 !	,		, :	3	! 3 !	2.5
160	N	6Dba	20.66		20.40	23	5	2	2		5	2	4		! 4 !	4	42	4.	5 /	! 4 ! 4	1./
162	N	209K 6Dve	2000		ZUya	23	3	5	2		4	2	4		141	4	-	4	3	141	1.4
163	N	6Dyj				33	3	4			•	3	4	3	141	4	42	4	3	 . 4 .	14.0
164	N	2Dba	2Ddb		2Dda	33	3	4				3	4	2	141	4	4	4 :	3	! 4 !	24.8
165	N	2Ugg				3	2	2	2			4	3	2	141	3	1 2	4 4	4	! 4 !	4.1
160	N N	ouyg 6Dvi				23	כ ד	כ ד				2	4	3	141	4	42	4.	२ र	. 4 . . 4 .	5.5
168	N	2Uge2				3	2	3				4	4	2	141	3	3	4	3 4 .	1.1
169	N	6Dyf				23	3	2				2	3		! 3 !	3		3 3	3	! 3 !	2.1
170	Y	6Dya	6Dyg	40	2Dbb	23	3	3	2			3	4	2	141	4	42	4	3	141	29.5
171	N	6Dyj 20.hh	20.db			33	3	3	2	2		3	4	3	141	4	42	4 :	5	! 4 ! 1 / I	4.2
173	N N	2000 60.va2	2000			33	3	3	э 3	2		3	4	2	141	4	42	4	2	: 4 : 4	8.0
174	N	6Dbe2	6Dda		6Dye2	23	3	2	3	2		2	4	-	141	4	42	4	2	41	23.7
175	N	2Uge			-	2	2	3	2			4	3	_	141	3	3	4 4	4	! 4 !	2.6
176	N	6Dyj				33	3	4	2			3	4	3	! 4 !	4	42	4	5 z	! 4 !	4.7
179	N M	00CD3	60ba			24	כ ד	٦				4 て	4		121	4	4	4	3	:] ! 4	2.2 9 n
179	N	60 yb	000a			23	2	2			4	3	-			-	7	2	3	. . . ! 3 !	0.7
180	Y	2Ugk	2Dyb	35	2Ugc	3	2	3	2			4	4		! 4 !	4	3	4	4	! 4 İ	17.0
181	N	6Dba3				23	3	3	<u> </u>			2	4		141	4	42	4	3	! 4 !	0.8
182	Y	20bb	2Ugk	40		53	5	5	22		c	5	4		141	4 /.	4	4.	כ ד	! 4 ! /	5.6 1 4
184	N	20vh	2Dbc			23	3	3	2		2	3	4		141	4	4	4	3	. . ! 4	17.1
185	N	2Dda	2Dya		2Ddb	33	3	3	-			3	4		141	4	4	4	3	! 4 !	95.6

C-Complex, ST-Soil Type, n-fertility, m-plant water availability, id-internal drainage, ps-soil surface conditions, t-gradient, g-microrelief, w-wetness, e-erosion, ss-secondary salinisation, pd-soil distribution complexity, r-rockiness/stoniness, so-sodicity, sa-salinity, d-soil depth, p-permeability.

APPENDIX VIII (CONT.)

	La	nd Reso	urce Da	ata			(ap	sic	um((ap)	Limi	tati	ons			Mango	o(Ma) Lin	nitat	ic	ons	
UMA	C	Dom.ST	ST2	%ST2	ST3	nm	id	ps	t	g w	e ss	pd	r p	so	sa !	Suit. Cap!	SO S	s r sa d	id w	i S 1	Suit. Mg !	Area ha
																•						
186	N	2Ugk				3	2	3		2			4	4		! 4 !	3	3	44	. !	4 !	3.3
187	N	6Dba2				23	3	2	2				2	4		! 4 !	4	4	43		4 !	5.1
188	N	6UyD2	6UcbV			24	25	2	2				4			1 2 1			23		3 ! 3 I	10.2
190	N	6Dda	00004			23	3	3	2				2	4		141	4	4	43		4 1	4.6
191	N	6Dyf2	6Uma2			23	3	2	2					4		141	4		33	1	4 1	8.9
192	N	6Dba				23	3	2	2				2	3		! 3 !	4	4	43		4!	2.1
193	N	2Sp		/-		~ 7	7	7	~	5			-	,		! 5 !	,	,	/ -	!	5!	1.3
194	Y M	20da 20bb	20ур	40		23	ר ז	ר ז	2				ר ד	4		141	4	4	43		4 !	1.0
195	N	2000 2Uak	2Dbc			3	2	3	2	2			4	4		141	3	3	4 4		4 1	16.0
197	N	2Dyb2	2Dyb			23	3	3	2	-			3	4		141	4	4	43	ļ	41	17.4
198	N	6DbbE	6Dbb2		6Uma						5					! 5 !				i	5!	29.1
199	N	2Ugd				-	_	_		_				-		141	_			!	4 !	0.8
200	N	2Ugd	2D 네뉴		2066	2	2	5	2	2			4	5	7	141	5	,	44		4 !	2.6
201	N	200a 20od	2000		2000	22	2	4 て	2	2			2	4 て	С	141	4 3	4	43		4 !	21.4
202	N	20gu 20baF				2	2	5	2	2	5		-	5		151	5			ļ	51	2.0
204	N	2Dba				33	3	4	3		2		3	4	3	141	4	4	42	1	4 !	7.5
205	N	2Dba	2Dbb2		2Ugk	33	3	3	2				3	4	3	141	4	4	43	1	4!	25.8
206	Y	2Ugk	2Dya	45	2Dba	33	3	3	2	2			4	4		! 4 !	4	4	43		4 !	23.5
207	Y	2Ugk	2066	55	2Ugk2	5 2 7	z	5	2	2		2	4 7	4		141	5	5	44		4!	16.5
208	N	2Uge				3	2	3	2	2		۲.	4	3		141	3	3	43		4 !	10.2
210	N	2Dda	2Dba		6Ddb	33	3	3		-			3	4	2	141	4	4	43	i	4 !	12.1
211	N	6Dyj				33	3	3					3	4	3	! 4 !	4	4	43	!	4!	1.1
212	Y	6Ddb2	2Uge	35	6Dyj	33	3	3		2		_	3	4		141	4	4	43	!	4 !	5.2
213	Y	6Dyg2	2Uge2	35	6Dyd2	35	5	5				5	5	4		141	4	4	45		4 !	6.0
214	N	60 Da 20 da	оруд			23	2	2		2			2	4		141	4	4	43		4 !	3.1
216	N	60vb				22	2	2	3	-	2		2	-		131	3		22	1	21	2.4
217	Ŷ	2Ugk	2Ugh	45	2Ugg	3	2	3	2	2			4	4		141	3	3	44	1	4 !	31.9
218	N	2Dba	2Ddb			33	3	4	2				3	4	3	! 4 !	4	4	43	!	4!	4.9
219	N	2Ugh			0 - "	3	2	3	~	2			4	4		! 4 !	3	3	44	. !	4 !	26.5
220	Y	2Dbb	2Ugk	40	2Ddb	55	5 7	2	2	2			د ۲	4	7	141	4	4	43	1	4 !	32.4
221	N	ouyj 20va	20bb		2Ddb	33	3	3					3	4	5	141	4	4	43	i	4 !	18.9
223	Ÿ	2Dva	2Ugk	40	2Dbb	33	3	3		2			3	4		141	4	4	43	ļ	4 1	50.0
224	N	6Dyb	6Dya		6Dba	23	2		2			3	3			131			23	!	3!	14.0
225	Y	2Dya	2Dda	35	2Ddb	33	3	3	2				3	4	_	! 4 !	4	4	43	1	4 !	217.9
226	N	2Dba 2Dda				33	3	4	2				5	4	5	141	4	4	45	!	4 !	7.8
227	N	200a 200a	2ilac			3 3	2	3	2	2			4	4		141	3	3	4 4	i	4 1	22.6
229	N	2Dba	2030			33	3	4	2	_			3	4	3	141	4	4	43	1	4 !	4.9
230	N	6Dyb				22	2	2	2			3	2			! 3 !			23	!	3!	2.0
231	Y	2Ugd	2Dyb	40	2Ugc	2	2	3	3		2	2	4	3		! 4 !	3	,	42	!	4 !	9.5
232	N	6Dda2	6Gnb		4 Dural	23	5	5 7	2	2		2	2	4		1 7 1	4	4 Z	43	1	4 !	2.7
233	N	20ge 6Dvb	200C 20da		ouyu	22	2	2	3	2			2	5		131	4	5	22	i	2 !	4.6
235	Ÿ	2Dvb	2Ugk	35	2Dbd	33	3	3	2	2		2	3	4		141	4	4	44	ļ	4 !	43.8
236	Ŷ	2Dba	2Ugk	35		33	3	3	2			2	3	4	3	141	4	4	44	. 1	4!	6.8
237	N	6Dyg				23	3	2	2			_	2	3		131	4	4	43	1	4!	9.0
238	N	2Dya2	4D	10		23	3	3	2			3	3 z	4		14!	4	4	43	!	4!	2.6
259	Y V	2000	ouye 60yb2	4U 45	60ve2	<u>כ</u> ג ג ג	נ ד	נ ד	4			2	נ ד	4	3	141	4	4	4 3	1	4 !	12.9
240	N	200a 20da	2Dba		<i>,</i>	33	3	3	3		2	-	3	4	2	141	4	4	42	i	4 i	6.6
242	N	6Dyb	6Dya			23	2	2	3			3	3			131			22	ļ	21	6.6
243	N	2Dba	2Ddb		2Dyb	33	3	4	3		2		3	4	3	141	4	4	4 2	!	4!	29.9
244	N	6Dye				23	3	-	3		2	4	3	3		141	4		4 2	!	4 !	4.9
245	N	2Ugd	2Dda		2014	2 7	2	5	2 2		2		4 7	5		1 7 1	د ۲	4	42		2 !	28 4
240 247	N	20ya 60ba	60bd		20 90	23	3	2	5		4	3	2	4		151	4	4	4	1	4 !	1.1

C-Complex, ST-Soil Type, n-fertility, m-plant water availability, id-internal drainage, ps-soil surface conditions, t-gradient, g-microrelief, w-wetness, e-erosion, ss-secondary salinisation, pd-soil distribution complexity, r-rockiness/stoniness, so-sodicity, sa-salinity, d-soil depth, p-permeability. APPENDIX VIII (CONT.)

UMA	La C	nd Reso Dom.ST	urce D ST2	ata %ST2	ST3	n	m) id	Cap ps	si t	cun q	n(C W	ap e) L' ss i	imit od r	tati D	ions so	sa sa	Su	uit		Mango so ss	(Mg)) Lir sa d	nit id	at u	io S	ns uit	۸re
	-									-	J		-	1		٢			! Ca	ap!	•			Julu	14	-	!	Mg !	ha
248	Y	2Dya	2Ugd	40		2	3	3	3	2	2					3	3		i	3	I	4		4	4	3	i	4 !	2.
249	N	2DbdE											5						i	5	!						i	5 !	4.
250	N	2UgdE											5						i	5	ļ						!	5 !	2.
251	Y	20ba	2Ddb	45	2Dda	3	3	3	4	2						3	4	3	i	4	i	4		4	4	3	ļ	4 !	42.
252	N	6Dbh				3	3	3	4	3			2			3	4		i	4	!	4		4	4	2	ļ	4 !	6.
253	N	6DygE	6Dye										5						!	5	!						ł	5 !	8.0
254	Ν	6Dda				2	3	3	3	2						3	-4		i	4	!	4		4	4	3	İ	4 !	9.
255	Ν	2Dda				2	3	3	3							3	4		i	4	!	4		4	- 4	3	i	4 !	11.
256	N	2DyaE											5						I	5	!						i	5!	11.
257	Ν	6Dyb3				2	2	2	2	4			3		2	3			i	4	!			2	2		i	2 !	0.0
258	Ν	2Dbc				2	3	3	2	4			3		3	2	4		i	4	i	4		3	4	2	ļ	4 !	2.
259	Ν	2Ugd	2Ugc		2Uge	2		2	3		2					4	3		!	4	!	3			4	4	I	4 !	31.0
260	N	2Dba	2Ddb		-	3	3	3	4	4			3			3	4	3	I	4	!	4		4	4	2	Ì	4 1	13.
261	N	2Ugk	2Uge			3		2	3	2	2					4	4		I	4	!	3		3	4	4	Ì.	4 1	11./
262	Ν	2Dyb	2Dbb			2	3	3	3	2						3	4		Ì	4	İ	4		4	4	3	i	4 1	15.
263	N	6Dvf				2	3	3	2	2						2	4		i	4	i	4			3	3	i	4 i	6.
264	N	2Dbb	2Dba			3	3	3	3	3			2			3	4	2	i	4	i	4		4	4	3	i	4 1	10.
265	N	2Dda	2Dva		2Dbb	2	3	3	3	2			-			3	4	-	i	4	i	i.		4	ż	3	i	4 1	24.0
266	Ň	2Dba	2Dba2		2Dda	3	3	3	4	- 4			3			3	4	3	i	4	i	4		į.	ż	2	i	4 1	24.9
267	N	2Uak	2Uge			3	-	2	3		2		-			4	Å	-	i.	Å.	i	3		3	ż	2	i	<u>4</u> i	17
268	N	2Dvb	2Dbb			3	3	3	3	4	-		3			3	ż		i	ż	i	4		4	4	2	i	Ž i	0.1
269	N	6Dvd				2	2	2	3	3			2		2	-	•		i	3	i	•		•	2	2	i	21	2
270	N	2Dba				3	3	3	4	3			2		-	3	4	3	i	ž	i	4		4	2	ž	i	Δi	1
71	N	6UacE				-	-	-	·	-		i	5			-	•	•	i	5	i	•		•		-	i	5 1	7 (
772	Ŷ	2Dbb	2Ddb	40	2Dvb	3	3	3	3	4			3			3	4	2	i	Ĩ.	i	4		4	4	2	i	Á i	11 1
77	Ň	20bd	2Dvh		2Dda	2	3	3	2	ż			z			2	ż	-	i	ż	i	4		z	7	2	i		30
74	N	20vh	20,0		Lbaa	2	3	ž	3	2						ž	Ā		i	4	i	Å		4	7	ž	i	4 1	7
75	N	2Dda				2	3	3	3	2			3			3	ž		i	7	I	ž		Ž.	7	2	i	4 1	7 /
		2000				-	5	5	3	7						3	-		•	-	•	-		-	-	2	•		/
C-Co	omp	lex, ST	Soil 1	Гуре,	n-fert	 tili	ity	 ', m	 1-pl	ar	nt	 wa:	 ter	•	vail	 abi	 lit	 У,	ic	 I- i	 nte	rnal d	 rain	age,					