DNRQ980015

LAND RESOURCES BULLETIN SERIES LAND RESOURCES BULLETIN SERIES

LAND RESOURCE ASSESSMENT SEQ 2001 REPORT 6

Soils and Land Suitability The Kilcoy – Woodford Area

South East Queensland

J.K. Loi, and D.T. Malcolm Resource Sciences Centre

Department of Natural Resources, Brisbane Queensland 1998

Land Resources Bulletin Series

LAND RESOURCE ASSESSMENT SEQ 2001

REPORT 6

Soils and land suitability The Kilcoy – Woodford area

South East Queensland

J.K. Loi and D.T. Malcolm Resource Sciences Centre

Department of Natural Resources, Queensland Brisbane 1998 Department of Natural Resources and Mines DNRQ980015 ISSN 1327-5763

This publication is for limited distribution. It is intended as an aid for strategic planning by local councils in south-eastern Queensland. The information in this report is derived from 1:50 000 scale land resource mapping which is an adequate scale for planning purposes. In assessing individual applications for subdivision a detailed assessment of land resources is usually necessary. Explicit evaluation of economic factors such as the size of production units or crop viability have not been included in the suitability assessment as they are not considered relevant to the quality of the land resource (State Planning Policy 1/92). This study has been funded by treasury special funds, with additional contributions from the Beaudesert Shire Council.

This report is intended to provide information only on the subject under review. There are limitations inherent in land resource studies, such as accuracy in relation to map scale and assumptions regarding socio-economic factors for land evaluation. Before acting on the information conveyed in this report, readers should ensure that they have received adequate professional information and advice specific to their enquiry.

While all care has been taken in the preparation of this report neither the Department of Natural Resources and Mines nor its officers or staff accepts any responsibility for any loss or damage that may result from any inaccuracy or omission in the information contained herein.

© State of Queensland, Department of Environment and Resource Management

Department of Environment and Resource Management GPO Box 2464 BRISBANE QLD 4001

For information about this report contact Soils@derm.qld.gov.au

Contents

iii	

List of tables List of figures	iv iv
List of maps	iv
Summary	v
1. INTRODUCTION	1
2. METHODOLOGY	2
3. PHYSICAL ENVIRONMENT	3
Geology and terrain	3
Climate	5
Hydrology	5
4. SOILS	8
Soils on level to gently undulating terraces	8
Soils on undulating to rolling rises	12
Chemical properties	16
5. LAND EVALUATION	18
Land suitability for agriculture	18
Limitations and land suitability assessment	18
Agricultural land classes	28
Assessment for on-site sewage effluent disposal	33
Suitability of soils for sewage effluent disposal	34
6. ACKNOWLEDGMENTS	36
7. REFERENCES	37
APPENDICES	
1. Land suitability classification for selected crops	39
2. Main limitations of UMAs unsuitable for sorghum, maize, crucifers and potatoes	48
3. Main limitations of UMAs unsuitable for macadamia, citrus and rye grass	57
4. Suitability of soils in the Kilcoy – Woodford area for selected crops	66
5. Heatwaves and frosts	76

List of tables

Table 1.	Geology of Kilcoy–Woodford area	3
Table 2.	Climate – rainfall, evaporation and raindays	6
Table 3.	Climate – temperatures	7
Table 4.	Main characteristics of the soils in the Kilcoy-Woodford area	10
Table 5.	Fertility and rating of surface soils of the Kenilworth–Conondale area,	17
	north of Kilcoy–Woodford	
Table 6.	pH, exchangeable cations, cation exchange capacity (CEC) and clay content	17
	of soils in the Kenilworth–Conondale area, north of Kilcoy–Woodford	
Table 7.	Land use requirements and limitations for crops considered in	19
	Kilcoy–Woodford area	
Table 8.	Suitability of UMAs for selected crops in the Kilcoy–Woodford area	20
Table 9.	Areas suitable for sorghum, maize, soybean, crucifers, potatoes, macadamia,	28
	citrus and rye grass in the Kilcoy–Woodford area	
Table 10.	Agricultural land classes of soils and UMA in the Kilcoy-Woodford area	30
Table 11.	Suitability rating for on-site effluent disposal	34
Table 12.	Representative soil permeability for various soil textural classes	34

List of figures

Figure 1.	Location of Kilcoy–Woodford area	2
Figure 2.	Geology of Kilcoy–Woodford area	4

List of maps (Scale 1:50 000)

Included in this report:

Soils and landform	DNR Ref. No. 98-SEQ-I-A1 3124
Agricultural land classes	DNR Ref. No. 98-SEQ-I-A1 3136

Available on request:

DNR Ref. No. 98-SEQ-I-A1 3215
DNR Ref. No. 98-SEQ-I-A1 3219
DNR Ref. No. 98-SEQ-I-A1 3220
DNR Ref. No. 98-SEQ-I-A1 3221
DNR Ref. No. 98-SEQ-I-A1 3222
DNR Ref. No. 98-SEQ-I-A1 3223

Summary

The Kilcoy–Woodford area of 18 700 ha was surveyed at a medium intensity level at 1:50 000 scale from February to August 1996. The area is located to the south west of Maleny and north of Somerset Dam in the Sunshine Coast hinterland.

The study area covers the low-lying plains and terraces of the parts of the Stanley River and other creeks draining into Somerset Dam, and the adjoining undulating and rolling rises.

The soil and land characteristics of some 525 sites were described in detail and this information was stored on computer file. These and other, less detailed field site observations together with aerial photograph interpretation, identified and mapped 436 unique map areas (UMAs). Two broad groups of soils: *soils developed on alluvial plains and terraces* and *soils developed on undulating rises* are described in detail; the distribution of 38 soil types found in the area is shown in the Soils and Landform map at 1:50 000 scale which is included in this report.

Each unique map area (UMA) was assessed for its suitability for the climatically suitable crops: sorghum, maize, crucifers, potatoes, macadamia, citrus and rye grass. A total of 33–37% of the area is suitable for sorghum, maize, crucifers and potatoes. Only 20% and 13% of the area is suitable for citrus and macadamia respectively. Rye grass, being less demanding, can be grown on 74% of the area. Land suitability maps for these crops are available on request to Department of Natural Resources.

Severe limitations (subclasses 4 and 5) of each UMA for the crops considered in the area are shown in Appendices 2 and 3. UMAs not listed on these appendices are suitable for the crops considered. This list of severe limitations allows the land users to determine if any of the marginal mapping units (class 4) can be ameliorated and the estimated costs involved. Introduction of any new technology, land pressure and price of commodity may have an impact on such a decision.

With reference to the *Planning Guidelines* (DPI/DHLGP, 1993) no Class A land (**Crop land**) was found in the area. Class B land (**Limited crop land**) occupies the bulk of the area at about 8860 ha or 47%. Class C land (**Pasture land**) and class D (**non agricultural land**) each occupy about 26% of the area. Agricultural land classes of the Kilcoy–Woodford area in the order of UMA number are shown in Table 8. This information is also depicted on the Agricultural Land Classes map at 1:50 000 which accompanies this report.

Land assessment information of this area was compiled from coloured 1:25 000 aerial photographs supplemented with ground observation. The information is accurate at the scale of mapping of 1:50 000 which is generally sufficient for planning purposes. In assessing an individual application for subdivision, a more detailed land investigation is usually necessary.

1. INTRODUCTION

The SEQ2001 project was an initiative of the Regional Planning Advisory Group (1993). This initiative involved the collection of land resource information including soil, land suitability and vegetation of priority areas of south east Queensland, and providing appropriate information to address the planning and management needs for sustainable land use. The project was to assist the strategic planning by shire councils in south east Queensland to tackle concerns such as:

- rapid population growth,
- rezoning of rural land to non-productive uses,
- conflict between agriculture and other land uses,
- degradation of rural lands,
- need for land uses to be ecologically and economically sustainable, and
- over-exploitation of natural resources.

Land resource information and interpreted products were to be provided in a GIS form and maps available at 1:50 000 scale for resource planning and management. Other users of the information include sub-regional organisations of Councils, State Government agencies, agricultural industries and the development industry.

The medium intensity land resource survey at 1:50 000 scale was also to provide an understanding of the physical constraints on land use and the criteria by which land suitability for specific land uses are determined. Land use patterns with maximum community benefit and least economic, environmental and social cost will result when all stakeholders understand the constraints on land use. The project was funded by Treasury special funds.

The Kilcoy–Woodford area was identified by the Kilcoy Shire Council as requiring more detailed land resource information for planning purposes. The Kilcoy–Woodford area is the sixth in a series of land assessment reports of the south east Queensland SEQ2001 project.

It covers an area of about 18 700 ha and is located to the south west of Maleny and north of Somerset Dam. The area saddles part of both Kilcoy and Caboolture shires in the Sunshine Coast hinterland (Figure 1). The Kilcoy–Woodford area covers the low-lying plains and terraces of the parts of the Stanley River and other creeks draining into the Somerset Dam, and the adjoining undulating and rolling low rises. The surrounding steeper areas are not included in this study as they are mainly pasture land or non-agricultural land.

The field work in the area on soils, topography and vegetation was conducted from February to August 1996. Results of the land resource survey and assessment of the area for selected climatically suitable crops are presented in this report and its accompanying maps.

2. METHODOLOGY

1:25 000 coloured aerial photographs were interpreted to delineate slope and landform pattern. A free survey method (Reid, 1988) of field investigation was followed with observation sites based on predicted soil and landform variability as interpreted from aerial photographs, and accessibility. Land and soil characteristics of some 525 sites were fully described using the terminology of McDonald *et al.* (1990). From these observations and further aerial photograph interpretation, 436 mapping units or unique map areas (UMAs) were identified and mapped. Soils were assessed for their suitability for selected climatically suitable crops. Methodology for assessment of land suitability followed the guidelines in Land Resource Branch Staff (1990). A soils and landform map at a scale of 1:50 000 accompanies this report. Land suitability information for climatically suitable crops is stored on computer and can be retrieved as required. Based on land suitability information, agricultural land classes (DPI/DHLGP, 1993) were established and an Agricultural Land Classes map was compiled at 1:50 000 scale.

Figure 1. Location of Kilcoy–Woodford area

3. PHYSICAL ENVIRONMENT

Geology and terrain

The geology of the Kilcoy–Woodford area is depicted in the 1:100 000 Nambour sheet which was modified from 1:250 000 Gympie sheet by Martin *et al.* (1976–77). This information is reproduced in Figure 2 with boundary of the alluvium (Qa unit) modified as a result of this survey. The geological units and lithology in the area are summarised in Table 1.

Origin of parent material	Geological unit	Lithology	Age
Alluvium	Quaternary alluvium (Qa)	Clay, silt, sand and minor gravel	Quaternary
Sedimentary rocks	Northbrook Beds (Pn)	Mudstone, siltstone and shale	Early Permian
	Undifferentiated (Pz)	Shale, mudstone, slate, chert and greywacke	Carboniferous
Acid igneous and volcanic rocks	Neurum Tonalite (Rm)	Tonalite, granodiorite, porphyritic tonalite	Early to Middle Triassic
	Mount Bryon Volcanics (Rb)	Rhyolite, trachyte and basalt	
Intermediate and basic igneous and volcanic rocks	Neara Volcanics (Rtn)	Agglomerate and andesitic tuff	Early to Middle Triassic
Metamorphic rocks	Rocksberg Greenstone (Pzr)	Basic meta-volcanics and some schist	Permo- Carboniferous

Table 1. Geology of Kilcoy–Woodford area

Source: Martin, J.E., Willmott, W.F. and O'Flynn, M.L. (1976-77)

The present landform is mainly the result of geomorphological processes in the Pleistocene. Subsequent pedogenesis resulted in the current suite of soils. For simplicity, soils in the area are grouped according to the origin of their parent material.

The Quaternary alluvium comprises clay, silt, sand and minor gravel (Fig 2). Pedogenesis of this rather variable alluvium has produced a range of varied soil types which cover the level to gently undulating terraces formed by the drainage system in this area. The most extensive soils here are *Basel* (Black or Brown Dermosols^{*}), *Bellbird* (Brown or Red Dermosols) and *Harper* (Grey or Black Dermosols), suggesting that fine sediments predominated in the original deposition in a low energy environment in the development of the low-lying area.

The sedimentary geological units of Northbrook Beds (Pn) and undifferentiated shale, mudstone, slate and greywacke (Pz) occur mainly in the western portion of the area. They give rise to *Kilcoy* (Brown Chromosols), *Jonlyn* (Grey Chromosols), *Kamerigo* (Red Chromosols or Red Kurosols) and *Kenilworth* (Brown Dermosols) soils.

^{*} Isbell, 1996

The acid igneous rocks units of Neurum Tonalite (Rm) and Mount Bryon Volcanics (Rb) mainly occur in the eastern portion of the area. The most common soils developed from these units are *Durundur* (Brown or Yellow Chromosols) and *Glenfern* (Grey Chromosols or Grey Kurosols).

The intermediate and basic igneous rocks units are represented by Neara Volcanics (Rtn). These rocktypes are not extensive and occur only in the western portion of the area. The common soils developed on these units are *Deer* (Brown Dermosols), *Dunwich* (Brown Chromosols), *Jimna* (Grey or Black Vertosols) and *Paddy* (Brown Chromosols).

The metamorphic rocks unit of Rocksberg Greenstone (Pzr) is a minor geological unit on which *Bunya* (Red Chromosols or Red Kurosols) have developed.

Figure 2. Geology of Kilcoy–Woodford area

Climate

The monthly rainfall at Kilcoy for the period 1990–1993 is shown in Table 2 (Bureau of Meteorology, 1995). The mean monthly rainfall at Kilcoy for the period 1890–1993 ranges from 32 mm to 141 mm with a mean annual rainfall of 971 mm. The long-term (1958–1993) mean monthly rainfall data at Kirkleagh south of Kilcoy show a similar trend (Table 2). The period from April to October is comparatively drier with a mean monthly rainfall of less than 80 mm. The driest months of May to September have less than 60 mm mean monthly rainfall. The wettest months of December to February have a mean monthly rainfall of 115–140 mm. Although monthly rainfall is generally consistently low in the dry months, the wet months can also have low rainfall in certain years as indicated by the data from 1990–1993 in Kilcoy.

The estimated evaporation at Maleny, north east of the area, is shown in Table 2. The mean monthly evaporation is higher than the mean rainfall, and significantly so from September to April. Depending on the soil moisture status, rainfed crops may experience moisture deficits and irrigation in some form may be necessary.

The number of monthly raindays for the period 1890–1993 is shown in Table 2 (Bureau of Meteorology, 1995). It ranges from 4 to 10 raindays per month. As expected, the lesser number of raindays corresponds with the drier months. June to September have only 6 to 7 mean raindays per month. This trend is also supported by the long-term record from 1954–1994 at Kirkleagh (Table 2).

The nearest temperature recording station, Kirkleagh, south of Kilcoy, recorded the mean daily maximum temperature of about $29-31^{\circ}$ C from November to March and $20-22^{\circ}$ C from June to August (Table 3) (Bureau of Meteorology, 1995). The intervening months have temperatures in between these values. The mean daily minimum temperature is $17-20^{\circ}$ C from November to March and $8-9^{\circ}$ C from June to August. Mean temperatures and percent humidity at 9 am and 3 pm are also shown in Table 3.

Occurrences of extreme temperatures at Kirkleagh are not common. Data for a 21-year period from 1970 to 1990 are shown in Appendix 5. Heatwaves (screen temperatures $>38^{\circ}$ C) only occurred in October to March with December having the most heatwaves of 9 days within this period. On the other hand, frosts (screen temperatures $<2^{\circ}$ C) only occurred in June to August. Frosts occurred most frequently in July, with a total of 8 days within the 21-year period.

Hydrology

Three major creeks with tributaries arising from ranges and mountains of 500–600 m above Australian Height Datum (AHD) drain the area. Two of these creeks, Kilcoy Creek and Sandy Creek, flow south through the area to the Somerset Dam, just south of the area. The other major creek, Sheep Station Creek, flow south east to the dam having originated from the north west region, outside the area. Shorter creeks, such as Scrubby Creek, Mary Smokes Creek and Stony Creek are found in the eastern portion of the area and drain into the Standley

River which eventually flow into the Somerset Dam. The other short creek, the Oaky Creek, originates from the north west region and drain directly into the dam.

The Mary Smokes Creek and the Neurum Creek, which comes from the south, form the shire boundary between Kilcoy and Caboolture within the area.

The drainage system is fairly mature with slow to very slow creek flow, particularly in the lower portion of the creeks, before entering into the Somerset Dam. The tributaries in the upper reaches are still erosive with rapid flows after heavy downpours, but most of these is outside the area.

As in any other rural area in this region, there are many local dams of various sizes excavated by farmers. According to the farmers the water quality is generally good. There are, however, no records of channel flow, and capacity and quality of underground water in the area.

$\begin{array}{c} \text{Month} \rightarrow \\ \text{Year} \downarrow \end{array}$	Jan.	Feb.	Mar.	Apr.	May	Jun.	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1990*	68	282	161	95	143	28	35	12	7	65	96	66	1058
1991*	117	80	17	0	43	32	21	0	6	69	46	310	741
1992*	110	273	230	98	92	6	18	18	38	3	97	55	1038
1993*	77	62	78	10	40	14	52	35	35	27	107	61	598
Mean	141	138	120	77	60	56	47	32	38	67	79	116	971
(1890–1993)*													
Mean (1958–1993)**	136	114	92	59	52	47	54	36	34	76	86	117	903
Mean Evapo- ration ⁺	165	140	135	110	80	75	80	95	125	145	170	190	1510
Mean No. raindays ⁺⁺	10	10	10	7	7	6	5	4	5	6	7	8	85
Mean No. raindays ⁺⁺⁺	11	13	11	8	10	6	7	6	5	9	10	10	106

 Table 2.
 Climate – rainfall, evaporation and raindays

* Monthly rainfall (mm) for the period 1990–1993 and mean monthly rainfall (mm) for the period 1890-1993 at Kilcoy (Lat. 26° 56' S & Long. 152° 34' E)

** Mean monthly rainfall (mm) at Kirkleagh (1958–1993)

⁺ Mean evaporation (mm) estimated at Maleny

⁺⁺ Mean No. of raindays recorded at Kilcoy (1890–1993)

(Lat. 27° 2' S & Long. 152° 34' E) (Lat. 26° 45' & Long. 152° 50') (Lat. 26° 56' S & Long. 152° 34'' E) (Lat. 27° 2' S & Long. 152° 34' E)

⁺⁺⁺ Mean No. of raindays recorded at Kirkleagh (1953–1994)

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Year
Mean temp (9 a.m.)	25.5	24.5	23.2	19.9	16.4	13.1	12.1	13.8	17.9	21.2	23.5	25.1	19.7
% Humidity	71	76	77	80	80	81	80	74	67	65	66	68	74
Mean temp (3 p.m.)	28.5	27.6	27.2	24.8	21.9	19.2	18.9	20.7	23.5	25.1	27.1	28.5	24.4
% Humidity	59	63	59	57	56	54	51	44	43	49	51	54	53
Mean daily maximum	30.3	29.0	28.6	26.3	23.0	20.4	19.9	21.8	24.8	27.1	29.0	30.5	25.9
Mean daily minimum	20.6	20.5	19.2	16.0	12.7	9.2	8.0	8.9	11.9	15.1	17.4	19.4	14.9

 Table 3. Climate – temperatures

Mean temperatures (°C) and mean daily minimum and maximum temperatures (°C) for Kirkleagh (Lat. 27° 2' S Long. 152° 34' E) for the period 1978–1993

4. SOILS

The soils in the area can be broadly grouped according to the two landform units they occupy: soils on level to gently undulating terraces derived from alluvial parent material and soils on undulating to rolling rises derived from a range of rocktypes listed in Table 1. Many of the soils described in the Kenilworth-Conondale area (Loi et al., 1997) are present in this area. However, the larger areal extent and more complex geology in the area resulted in the identification of more soil types. Wherever possible, soil names described in the Brisbane Valley survey (Harms and Pointon, in preparation) to the west of the study area were used. New soil names have been created when necessary. Soils on residual parent material have been primarily separated on the different groups of rocktypes they developed from: sedimentary rocks, acid igneous and volcanic rocks, intermediate and basic igneous and volcanic rocks, and metamorphic rocks. The normal application of morphological and physico-chemical properties were than used as key criteria for their classification. The detailed characteristics of the soils described below are distinctive to this area. Some of the criteria used in establishing new soil types are thickness and texture of A horizon, bleached or unbleached nature of A2 horizon, colour of upper B horizon, profile texture, texture contrast between A and B horizons, and pH trend.

A total of 38 soil types have been mapped in the area with 17 of them occurring on level to gently undulating terraces, and the remainder on undulating to rolling rises. The landform, vegetation and detailed soil characteristics can be assessed through the land resource data base at the Resource Sciences Centre in Indooroopilly. The distribution and areal extent of the soils in this area are shown on the Soils and Landform map at 1:50 000 scale which accompanies this report.

Soils on level to gently undulating terraces

Soils developed on level to gently undulating terraces are classified into 17 soil types indicating the rather varied nature of the alluvial deposits. The variability in different materials laid down in the past was a result of the combined effect of the fluvial processes, Pleistocene sea level changes and subsequent erosional and depositional processes. A whole spectrum of uniform fine, medium, coarse-textured, gradational and texture contrast soils occur on level to gently undulating terraces. The soil depth indicated in the discussion below is the depth to weathered rock, pan or impermeable layer and generally reflects the rooting depth of natural vegetation. Soils on level to gently undulating terraces occupy about 8860 ha or 47 percent of the total area.

The main characteristics of the soils of alluvial origin are shown in Table 4 and briefly described below.

Uniform fine textured soils

Basel (Bs). (Black or Grey Dermosols).* The *Basel* soils occur on level to gently undulating terrace plains of 0.5–1.5% slope. This is the most extensive soil type and occupies 3640 ha or about 41% of the low-lying terraces. These non-cracking uniform clay soils have 0.1–0.2 m of silty light clay to light medium clay over dark or grey light medium clay to medium clay. The surface runoff is very slow and permeability is slow to moderate. The *Basel* soils are

imperfectly to moderately well drained. They are neutral to alkaline and subsoil pH ranges from 7.0 to 9.5. The depth of soil is more than 1.2 m.

Cooeeimbardi (*Cb*). (*Black Vertosols*). The *Cooeeimbaardi* soils are of minor occurrence with only about 260 ha in the area. They occur on level to gently undulating terrace plains of 0.5–2% slope, and may be associated with *Basel* and *Conondale* soils. These cracking clay soils have 0.1–0.2 m dark light clay to light medium clay over dark medium clay to medium heavy clay. Both the surface runoff and permeability are slow. They are imperfectly drained with surface pH of 6.0–8.0 and subsoil pH of 7.5–8.5. The depth of soil is more than 1.3 m.

Toogoolawah (*Tw*). (*Grey Vertosols*). Another minor soil type on the gently undulating terrace plains of 1-2% slope is *Toogoolawah* which occupies only 136 ha. It has 0.1 m dark light medium clay over grey medium clay with common orange mottles. The surface runoff is very slow to slow and permeability is slow. The soil type is imperfectly drained with surface pH of 5.8–6.0 and subsoil of 5.5–6.0. The soil depth is more than 1.5 m.

Uniform medium textured soils

Honey (*Hy*). (*Grey or Brown Dermosols; Stratic Rudosols*). The *Honey* soils occur on level to gently undulating terrace plains with slopes of 0.5-1.5%. The generally uniform loamy soil profile has 0.2-0.4 m of dark sandy clay loam surface over grey or yellow-brown sandy clay loam to clay loam. The surface runoff is generally very slow. Soil permeability is moderate and the soils are well drained. The soil pH is acid to neutral and ranges from 6.0 to 7.0 throughout the profile. The *Honey* soils are more than 1.1 m deep.

Uniform coarse textured soils

Cressbrook (Cr). (Stratic Rudosols). This soil type occupies 280 ha on level to undulating terrace plains of up to 4% slope. The *Cressbrook* soils may be associated with *Honey* and less commonly with *Basel, Bellbird* and *Harper* soils. The soil profile has 0.1–0.4 m dark or brown loamy sand to sandy loam surface over yellow-brown or yellow layered loamy sand to sandy loam with few medium rounded pebbles in the subsoil. Surface runoff is very slow to slow but the coarse-textured soils are highly permeable and well drained. The *Cressbrook* soils are acidic to neutral with pH ranges from 5.8–6.5 in the surface and 5.6–6.8 in the subsoil. They are more than 1.3 m deep.

Gradational soils

Bellbird (*Bd*). (*Brown or Red Dermosols*). The *Bellbird* soils are quite extensive and occupy about 1240 ha of the level to gently undulating terrace plains of 0.5–2% slope. They are commonly associated with *Basel* and less commonly with *Cressbrook* and *Harper* soils. The surface of the *Bellbird* soil profile has 0.1–0.3 m of dark sandy clay loam to clay loam. This is underlain by brown or red light clay to medium heavy clay with a few mottles at some sites. Runoff on the land surface is slow to very slow. The *Bellbird* soils are moderately permeable and moderately well drained. The soil pH is acid to neutral and ranges from 5.7 to 6.5 in the topsoil, and 6.0–6.8 in the subsoil. The depth of soil is more than 0.8 m.

Harper (Hp). (Grey or Black Dermosols). The *Harper* soils, which occupy about 950 ha, are developed on level to gently undulating terrace plains of 0.5–2% slope. They may be associated with *Basel* and less commonly with *Bellbird, Conondale, Cressbrook* and *Grigor* soils. The soil profile comprises 0.1–0.3 m dark fine sandy clay loam to clay loam over grey or dark fine sandy light clay to light medium clay with occasionally common orange mottles. The surface runoff is slow to very slow, and the soil is moderately permeable and moderately

well drained. The soil reaction is acid to neutral with pH ranges from 5.8-6.5 and subsoil 6.0-7.0. The soil depth is more than 1.5 m.

Texture contrast soils

Beausang (Bg). (Grey Chromosols). The *Beausang* soils occupy about 290 ha of level to gently undulating terrace plains of up to 2% slope. The soil type is commonly associated with *Bellbird, Conondale, Harper, Ottaba* and *Smokes* soils. The soil profile is characterised by 0.2–0.45 m occasionally bleached dark, fine sandy loam to fine sandy clay loam surface over grey sandy light clay to medium clay with common orange mottles. Surface runoff is very slow. Permeability is moderate and the soils are imperfectly drained. The surface pH is 5.8–6.5 and subsoils are neutral with pH of 6.8–8.0. The soil depth ranges from 0.8 to more than 1.5 m.

Conondale (Cn). (Grey Chromosols). This soil type occupies about 350 ha of the level to gently undulating terrace plains of 0.5-3% slope. The soil type is occasionally associated with *Basel* and *Bellbird* soils. The soil profile has 0.2-0.3 m dark over light grey sandy clay loam to clay loam, over grey light medium clay to medium clay with common orange mottles. Surface runoff of the *Conondale* soils is very slow, permeability is slow and they are imperfectly to moderately well drained. The soil pH is variable and can range from 5.5-7.5 in the surface, 5.5-8.5 in the subsoil and 8.0-9.3 in deep subsoil. The *Conondale* soils are more than 1.4 m deep.

Soil	A Ho	orizon	B Horizon		j	рН	
type	Depth(m)	Texture**	Colour*	Texture**	A Hor.	B Hor.	depth(m)
	So	ils on level	to gently u	undulating terr	aces		
Uniformed fine tex	tured soils						
Basel (Bs)	0.1-0.2	LC-LMC	Dk, Gy ⁺	LMC-MC	5.8-7.5	7.0-9.5	>1.2
Cooeeimbardi (Cb)	0.1-0.2	LC-LMC	Dk	MC-MHC	6.0-8.0	7.5-8.5	>1.3
Toogoolawah (Tw)	0.1	LMC	Gy	MC	5.8-6.0	5.5-6.0	>1.5
Uniform medium to	extured soils	S					
Honey (Hy)	0.2-0.4	SCL	Gy, YBr	SCL-CL	6.0-7.0	6.0-7.0	>1.1
Uniform coarse tex	tured soils						
Cressbrook (Cr)	0.1-0.4	LS	YBr, Y	Layered	5.8-6.5	5.6-6.8	>1.3
				LS-SL			
Gradational soils							
Bellbird (Bd)	0.1-0.3	SCL-CL	Br	LC-MHC	5.7-6.5	6.0-6.8	0.8->1.5
Harper (Hp)	0.1-0.3	SCL-CL	Gy, Dk	FSLC-LMC	5.8-6.5	6.0-7.0	>1.5
Texture contrast so	oils						
Beausang (Bg)	0.2-0.45	FSL-FSCL	Gy	SLC-MC	5.8-6.5	6.8-8.0	0.8->1.5
Conondale [▲] (Cn)	0.2-0.3	SCL-CL	Gy	LMC-MC	5.5-8.5	8.0-9.3	>1.4
Cookes (Co)	0.15-0.25	SCL-CL	YBr	LMC	5.5-5.8	5.7-5.8	1.1-1.5
Grigor (Gr)	0.15-0.25	FSL-CL	Dk	LMC-MC	6.0	6.2-6.8	>1.3
Gunyah (Gy)	0.1-0.2	CL	Gy, YBr	LMC-MC	6.5-8.3	8.0-8.5	>1.5
Ottaba (Ot)	0.2-0.3	SCL	YBr	MC-MHC	6.0	5.5-5.8	>1.0
Smokes (Sk)	0.3-0.5	SL-FSL	YBr, Br	SLC-MC	5.5-7.0	5.5-6.3	>1.7
Spencer (Sp)	0.2-0.3	CL	YBr	MC	6.0-9.0	7.0-9.0	>1.7
Gradational or tex	ture contras	st soils					
Gallanani (Gl)	0.2-0.4	FSCL	Dk, YBr,	FSLMC-LMC	6.5-7.0	6.5-8.0	>1.0
			Br				
Obi (Ob)	0.2-0.4	SL	Gy	SMC	7.0	8.5-9.2	>1.5

Table 4. Main characteristics of the soils in the Kilcoy–Woodford area

Soils on undulating to rolling rises													
Soils developed or	n sedimentar	y rocks			-								
Horse (Hs)	0.1-0.3	FSL	Gy	FSMC-MHC	5.2-6.0	5.0-5.5	>0.6						
Jonlyn (Jl)	0.1	CL	Gy	MHC	6.2	6.2	< 0.5						
Kamerigo (Ka)	0.1-0.25	L-CL	RBr, R	MC	5.0-6.2	5.0-7.0	0.6-1.5						
Kenilworth (Kl)	0.1-0.2	LC	Br	LMC-MC	6.5-6.8	5.8-7.0	0.6-1.5						
Kilcoy (Ky)	0.1-0.45	FSCL-CL	Br	LMC	5.8-6.0	6.7	0.4-0.9						
Noon (Nn)	0.1-0.2	CL	YBr, Y	LC-LMC	5.5-6.5	5.5-7.0	0.5->1.5						
Soils developed on acid igneous rocks													
Berrima (Be)	0.15-0.35	SL-SCL	Br, YBr	SCL-SLMC	5.5-5.8	5.3-5.5	>0.5						
Boolumba (Bo)	0.1-0.2	CL-LC	Br, YBr	LC-MHC	5.5-6.0	5.5-6.5	0.4-1.1						
Durundur (Dd)	0.15-0.35	FSL-FSCL	YBr, Y	FSLMC-MHC	5.5-6.7	6.0-7.0	0.6-1.7						
Esk (Ek)	0.1-0.4	SL	Gy, YBr	SL	5.5-6.5	5.5-6.5	0.2-0.7						
Glenfern (Gf)	0.3-0.45	FSL	Gy	MC-MHC	5.5-6.7	5.0-7.0	0.5-1.6						
Royston (Rt)	0.2-0.3	SCL-CL	Gy	LMC-MHC	5.5-7.0	5.5-6.3	0.6-1.0						
Scrubby (Sc)	0.15-0.3	CL-SLC	R, RBr	LC-SLMC	5.5-6.5	5.5-6.5	0.9-1.6						
Winya (Wn)	0.25-0.35	SL-FSL	RBr, Br	MC	6.0-6.3	6.0-7.0	1.1-1.4						
Soils developed or	n intermedia	te and basic	igneous roo	ks									
D'Aguilar (Dg)	0.25	CL	-	Bedrock	6.0	-	0.25						
Deer (Dr)	0.2-0.3	LC	Br	MC-MHC	6.0-7.0	5.5-7.5	0.4-1.5						
Dunwich (Dw)	0.3	CL	Br	MC	5.7-7.7	7.0-8.7	0.6-1.6						
Jimna (Jn)	0.1-0.3	LC-LMC	Gy, Dk	MC	6.5-7.5	6.5-8.5	>1.1						
Moore (Mo)	0.15	CL	YBr	MC	7.3	7.3	0.5						
Paddy (Pd)	0.1-0.2	L-CL	YBr	MC	5.7	5.3-5.5	0.8-0.9						
Soils developed or	n metamorph	nic rocks											
Bunya (Bu)	0.1-0.35	FSCL	R	LMC-MC	6.0-7.0	4.5-6.0	0.5-1.1						
*Colour classes as McI	Donald in Donne	ollan <i>et al</i> . (1990)) **]	Texture classes acco	rding to Mc	Donald <i>et al.</i> ((1990).						

 $^{+}$ Br = brown, Dk = dark, Gy = grey, R = red, RBr = red-brown, Y = yellow, YBr = yellow-brown

▲ has bleached A2 horizon

Cookes (Co). (Brown Chromosols). The Cookes soils are of minor occurrence and comprise only 125 ha of the level terrace plains of <1% slope. The soil profile is characterised by 0.15–0.25 m dark over grey sandy clay loam to clay loam surface, over yellow-brown light medium clay with few to common mottles. The surface runoff is very slow and permeability is slow. The *Cookes* soils are imperfectly drained. They have a acid soil reaction trend with pH of 5.5–5.8, and vary in depth from 1.1 to 1.5 m.

Grigor (Gr). (Black Chromosols). The Grigor soils, occupying about 290 ha, occur on level to gently undulating terrace plains of 0.5-3% slope. The soil profile is characterised by 0.15-0.25 m dark fine sandy loam to clay loam surface over dark light medium clay to medium clay. The surface runoff is very slow, permeability moderate and the soils are moderately well drained. The soil reaction is acid to neutral with surface pH of 6.0 and subsoil 6.2–6.8. The Grigor soils are deep, extending to more than 1.3 m.

Gunyah (Gy). (Grey or Brown Chromosols). The Gunyah soils, occasionally associated with Beausang soils, occupy about 235 ha of level terrace plains. The soil profile is characterised by 0.1–0.2 m dark clay loam surface over grey or vellow-brown light medium clay to medium clay. The surface runoff is very slow and the soil is slowly permeable and imperfectly drained. The surface soil pH is 6.5–8.3 and subsoil 8.0–8.5. The depth of soil is more than 1.5 m.

Ottaba (Ot). (Brown Chromosols). Only 125 ha of Ottaba soils are found on the gently undulating terrace plains. The soil profile is characterised by 0.2–0.3 m dark over grey sandy clay loam surface, over yellow-brown medium clay to medium heavy clay with occasionally common orange mottles.

The surface runoff is very slow and the soil is moderately permeable and imperfectly drained. The soil has an acid reaction with surface pH of 6.0 and subsoil 5.5–5.8. The *Ottaba* soils are deep, extending to more than 1.0 m.

Smokes (Sk). (Brown Chromosols). The *Smokes* soils cover about 360 ha of level to gently undulating terrace plains of 1–2% slope. They may be associated with *Cooeeimbardi* soils. The soil profile is characterised by 0.3–0.5 m dark over grey sandy loam to fine sandy loam surface, over yellow-brown or brown sandy light clay to medium clay with common grey or red mottles. The surface runoff is very slow to slow, and the permeability is slow to moderate. The *Smokes* soils are imperfectly to moderately well drained. The surface pH is 5.5–7.0 and subsoil 5.5–6.3. The *Smokes* soils are deep and extend to more than 1.7 m.

Spencer (Sp). (Brown Chromosols; Brown Sodosols). This soil type is minor and occurs in pockets on level to gently undulating terrace plains of 0.5–1% slope. It is commonly associated with *Basel, Bellbird, Conondale* and *Harper* soils. The soil profile has 0.2–0.3 m dark over bleached grey clay loam surface, over yellow-brown medium clay with occasional grey mottles. The surface runoff is very slow and the permeability is slow. The soils are imperfectly to moderately well drained. The soil reaction is neutral to alkaline with pH of 6.0–9.0 in the surface and 7.0–9.5 in the subsoil. The *Spencer* soils are more than 1.6 m deep.

Soils with texture contrast or gradational profile

Gallanani (Gl). (Black or Brown Chromosols, Brown Dermosols). This is a very minor soil type which occurs at the western boundary of the area. The soil profile has 0.2–0.4 m dark to yellow-brown fine sandy clay loam surface over dark, yellow-brown or brown fine sandy light medium clay to light medium clay. The surface runoff is slow and permeability is moderate. The soils are moderately well drained with surface pH of 6.5–7.0 and subsoil 6.5–8.0. The depth of soil is more than 1.0 m.

Obi (*Ob*). (*Grey Sodosols*). This is another soil type with very minor distribution in the area. The soil profile has 0.2–0.4 m dark over grey sandy loam surface, over grey sandy medium clay with common yellow bottles. The surface runoff is very slow and the permeability is slow. The soils are imperfectly drained with surface pH of 7.0 and subsoil 8.5–9.2. The depth of soil is more than 1.5 m.

Soils on undulating to rolling rises

The soils on undulating to rolling rises are developed on a range of rocktypes from sedimentary, acid, intermediate and basic igneous rocks and minor metamorphic rocks (see Section 3 and Table 1). The soils on the rises represent about 9850 ha or 53% of the total area. Twenty-one soil types have been mapped. The *Kilcoy* developed on sedimentary rocks, and *Durundur*, *Glenfern* and *Royston* on acid igneous rocks are the major soil types on this landform commanding a significant areal extent. The main characteristics of these soils are shown in Table 4. They are briefly summarised below.

Soils developed on sedimentary rocks

Horse (Hs). (Grey Kurosols). This is a minor soil type and occurs on undulating rises of 4–7% slope. It is often associated with *Kenilworth* soils and occasionally with *Jonlyn* soils. The soil profile has 0.1–0.3 m dark over grey fine sandy loam, over grey fine sandy medium

clay to medium heavy clay with common orange mottles. The surface runoff is slow and permeability is moderate. The *Horse* soils are moderately well drained with surface pH of 5.2–6.0 and subsoil 5.0–5.5. They are more than 0.6 m deep.

Jonlyn (Jl). (Grey Chromosols). The *Jonlyn* soils, commonly associated with *Horse* soils, occupy about 380 ha of the undulating rises of about 10% slope. The soil profile has 0.1 m dark clay loam over grey medium heavy clay with common orange mottles and common to many shale fragments throughout the soil profile. The surface runoff is slow and permeability is moderate. They are moderately well drained with pH of 6.2. The *Jonlyn* soils are shallow with a soil depth of less than 0.5 m.

Kamerigo (Ka). (Red Chromosols; Red Kurosols). The 400 ha of *Kamerigo* soils, which may be associated with *Kilcoy* soils, occur on undulating to rolling rises and low hills of 5–14% slope. The soil profile has 0.1–0.25 m dark over grey or yellow-brown loam to clay loam, over red-brown or red medium clay with common grey mottles. The surface runoff is slow to moderately rapid and the soils are moderately permeable. The *Kamerigo* soils are moderately to well drained with surface pH of 5.0–6.2 and subsoil 5.0–7.0. The depth of soils ranges from 0.6 to 1.5 m.

Kenilworth (Kl). (Brown Dermosols). The *Kenilworth* soils, commonly associated with the *Kilcoy* soils, occupy about 450 ha of the undulating to rolling rises of 4–18% slope. The soil profile has 0.1–0.2 m dark light clay surface over brown light medium clay to medium clay. The surface runoff is slow to moderately rapid and the soil is moderately permeable and moderately well drained. The soil reaction is acid to neutral with pH ranges from 5.8 to 7.0 in the surface and 5.8–7.0 in the subsoil. The *Kenilworth* soils are fairly shallow and range from 0.3 to 0.6 m deep.

Kilcoy (Ky). (Brown Chromosols). This soil type is the most extensive of the soils developed on the sedimentary rocks in the area. It occupies about 1880 ha of undulating to rolling rises of 5-16% slope and is commonly associated with *Kamerigo* soils. The soil profile has 0.1-0.45 m dark to grey fine sandy clay loam to clay loam over brown light medium clay. The surface runoff is slow to moderately rapid and permeability is moderate. The soils are well drained with surface pH of 5.8-6.0 and subsoil 6.7. They vary from 0.4 to 0.9 m in depth.

Noon (*Nn*). (*Brown Dermosols*). This is a minor soil type found on the gently undulating to undulating rises of 2-5% slope. It is commonly associated with *Kilcoy* and less commonly with *Kamerigo* soils. The soil profile has 0.1-0.2 m of dark over grey clay loam surface, over yellow-brown or yellow light clay to light medium clay with few quartz pebbles throughout the profile. The surface runoff is slow, permeability moderate and the soil profile is moderately drained. The soil reaction is acid to neutral with surface pH of 5.5–6.5 and subsoil 5.5–7.0. The soil depth ranges from 0.5 to more than 1.5 m.

Soils developed on acid igneous rocks

Berrima (Be). (Brown Kurosols). This soil type occupies 120 ha of the undulating rises and low hills of 3–9% slope. It may be associated with *Durundur* and *Scrubby* soils. The soil profile has 0.15–0.35 m sandy loam to sandy clay loam surface over brown or yellow-brown sandy clay loam to sandy light medium clay. The surface runoff is slow to moderately rapid and the soil has a moderate permeability. The *Berrima* soils are moderately well drained with surface pH of 5.5–5.8 and subsoil 5.3–5.5. They are more than 0.5 m deep.

Boolumba (*Bo*). (*Brown Chromosols; Brown Dermosols*). Only about 120 ha of this soil type is found on the undulating to rolling rises of 3–16% slope. It is often associated with the *Scrubby* soils. The soil profile has 0.1–0.2 m dark clay loam to light clay surface over brown or yellow-brown light clay to medium heavy clay. Common rock fragments are present in shallower soils on the steep end of the slope range. The surface runoff is moderately rapid and permeability is slow to moderate. The *Boolumba* soils are moderately well to well drained with surface pH of 5.5–6.0 and subsoil 5.5–6.5. The depth of soil ranges from 0.4 to 1.1 m.

Durundur (Dd). (Brown or Yellow Chromosols). This is the most extensive soil type of the rises and occupies about 2630 ha of the undulating to rolling rises and low hills of 4–22% slope in the area. It may be associated with *Glenfern, Royston* and *Winya* soils. The soil profile has 0.15–0.35 m dark over grey fine sandy loam to fine sandy clay loam, over yellow-brown or yellow fine sandy light medium clay to medium heavy clay with common grey and orange mottles. Common rock fragments in the soil profiles have been observed at a few sites. The surface runoff is moderately rapid and permeability is slow to moderate. The soils are moderately well drained with surface pH of 5.5–6.7 and subsoil 6.0–7.0. The depth of soil ranges from 0.6 to 1.7 m.

Esk (Ek). (Leptic Rudosols). The *Esk* soils are very minor and occur on undulating rises of 8-10% slope. The soil profile has 0.1-0.4 m dark sandy loam surface over grey or yellow-brown sand loam. The surface runoff is moderately rapid and the soil highly permeable and moderately well drained. The soil pH is acid at 5.5-6.5 throughout the profile. The *Esk* soils are rather shallow with a soil depth of 0.2 to 0.7 m.

Glenfern (Gf). (Grey Chromosols; Grey Kurosols). This is another dominant soil type on the rises and occupies about 1420 ha of the undulating to rolling rises and low hills of 3–15% slope. It is commonly associated with *Durundur* and *Royston* soils. The soil profile has 0.3–0.45 m dark over grey fine sandy loam, over grey medium clay to medium heavy clay with common orange mottles. The surface runoff is slow to moderately rapid and the soil moderately permeable and moderately well drained. The soil reaction is acid to neutral with surface pH of 5.5–6.7 and subsoil 5.0–7.0. The depth of soil ranges from 0.5 to 1.6 m.

Royston (Rt). (Grey Chromosols). This is a fairly extensive soil type which occupies about 620 ha of undulating to rolling rises and low hills of 5-14% slope. The *Royston* soils may be associated with *Durundur* and *Glenfern* soils. The soil profile has 0.2–0.3 m dark over grey sandy clay loam to clay loam, over grey light medium clay to medium heavy clay with common orange mottles. The surface runoff is moderately rapid and the soil is slow to moderately permeable. The soil is imperfectly to moderately well drained with surface pH of 5.5–7.0 and subsoil 5.5–6.3. The depth of soil is 0.6 to 1.0 m.

Scrubby (*Sc*). (*Red Ferrosols; Red Dermosols*). The *Scrubby* soils occur on undulating to rolling rises and low hills of 9–18% slope and occupy about 310 ha. They may be associated with *Durundur* and *Royston* soils. The soil profile has 0.15–0.3 m dark clay loam to sandy light clay surface over red or red-brown light clay to sandy light medium clay. The surface runoff is slow to moderately rapid and the soil is moderately permeable and moderately well drained. The soil reaction is acid with pH of 5.5 to 6.5 throughout the profile. The soil depth ranges from 0.9 to 1.6 m.

Winya (Wn). (Red Chromosols). The 150 ha of *Winya* soils occur on undulating to rolling rises and low hills of 10–25% slope. The soil profile has 0.25–0.35 m dark over brown sandy loam to fine sandy loam, over red-brown or brown medium clay with common yellow mottles. The surface runoff is moderately rapid and the soil is moderately permeable and moderately well drained. The surface soil pH is 6.0–6.3 and subsoil 6.0–7.0. The soils range from 1.1 to 1.4 m in depth.

Soils developed on intermediate and basic igneous rocks

D'Aguilar (Dg). (Leptic Rudosols). This is a very minor soil type and occurs only as an association with *Moore* soils on undulating rises of about 6% slope. The shallow soil profile has 0.25 m dark over grey clay loam with few rock fragments grading to bedrock. The surface runoff is moderately rapid and the soil is highly permeable and well drained. The shallow soil profile of less than 0.5 m has a pH of about 6.0.

Deer (*Dr*). (*Brown Chromosols*). This soil type which may be associated with *Jimna* soils occupies about 415 ha of the undulating to rolling rises of 4-15% slope. The soil profile has 0.2–0.3 m dark over grey light clay, over brown medium clay to medium heavy clay with few rock fragments. The surface runoff is slow and the soil is moderately permeable and moderately well drained. The surface soil pH is 6.0–7.0 and subsoil 5.5–7.5. The soil depth ranges from 0.4 to 1.5 m.

Dunwich (Dw). (Brown Chromosols). This soil type occurs on undulating to rolling rises of 4-16% slope and occupies about 230 ha of the area underlain by intermediate to basic igneous rocks. The soil profile has dark over grey clay loam, over brown medium clay. The surface runoff is slow to moderately rapid and the soil is moderately permeable and well drained. The surface soil pH is 5.7–7.7, subsoil 7.8–8.7 and 9.0–9.2 at depth. The *Dunwich* soils range from 0.6 to 1.6 m in depth.

Jimna (Jn). (Grey or Black Vertosols). This soil type occurs on about 210 ha of the undulating to rolling rises and low hills of 5–14% slope. It may be associated with *Durundur* soils. The soil profile has 0.1–0.3 m dark light clay to light medium clay over grey or dark medium clay. The surface runoff is slow and the soil is slow to moderately permeable and well drained. The surface soil pH is 6.5–7.5 and subsoil 6.5–8.5. The *Jimna* soils are more than 1.1 m deep.

Moore (Mo). (Brown Chromosols). This is a very minor soil type and occurs on the undulating rises of about 7% slope. The soil profile has 0.15-0.35 m dark over bleached clay loam, over yellow-brown medium clay with few rock fragments. The surface runoff is slow and the soil is moderately permeable and well drained. This comparatively shallow soil of about 0.5 m has pH of 7.3.

Paddy (Pd). (Brown Chromosols). The 120 ha of this soil type occurs on undulating and rolling rises of 6–11% slope. The soil profile has 0.1-0.2 m dark over bleached loam to clay loam surface, over yellow-brown medium clay to medium heavy clay with few rock fragments. The surface runoff is slow and the soil is moderately permeable and moderately well drained. The surface soil pH is 5.7 and subsoil 5.3–5.5. The *Paddy* soils have a moderate depth of 0.8 to 0.9 m.

Soils developed on metamorphic rocks

Bunya (Bu). (Red Chromosols; Red Kurosols). This is the only soil type found on the minor extent of metamorphic rocks in the area. It occurs on undulating to rolling rises of 5-18% slope and covers an area of about 130 ha. The soil profile has 0.1-0.35 m dark over bleached grey fine sandy clay loam, over red light medium clay to medium clay. The surface runoff is moderately rapid to rapid and the soil is moderately permeable and well drained. The surface soil pH is 6.0-7.0 and subsoil 4.5-6.0. The depth of soil ranges from 0.5 to 1.1 m.

Chemical properties

Due to funding and time constraints, soil samples have not been collected for analysis. However due to the proximity of this area to the Kenilworth–Conondale area (Loi *et al.*, 1997), both with comparable geology, soils bearing similar names to the later area are expected to have similar chemical properties. A summary of the chemical properties of the sampled soils in the Kenilworth–Conondale area which occur in the study area is given below.

Surface fertility

Table 5 gives levels and ratings for major soil nutrients and trace elements in the surface of three soil types found in the Kenilworth–Conondale are which also occur in the study area. The *Basel* represents the uniform fine textured soils, and *Conondale*, the texture contrast soils on the level to gently undulating terraces. The *Scrubby* represents soils on the undulating or rolling rises. The data indicate that the major nutrients, especially phosphorus and potassium, are sufficient. The levels of trace elements in these soils are sufficient for plant growth. The generally high level of organic carbon (2.8–4.9%) and a favourable C:N ratio (10–14) all point to the good condition of the surface soils. Electrical conductivity and chloride are very low in all the soils sampled indicating the absence of soluble salts, which is desirable.

Soil profile chemical properties

Some chemical attributes of Basel, Conondale, and Scrubby soils are given in Table 6.

Exchangeable calcium is generally above 'sufficiency' level (>2.0 cmol(+)/kg) (Baker and Eldershaw, 1993) in all the soil profiles except the subsoil of *Scrubby*. However when it is expressed as a ratio of the CEC, calcium (<65% of CEC) is found to be deficient in all the soil profiles except the surface horizons. Magnesium and sodium, on the other hand, are well above the 'sufficiency' level to the extent that they are detrimental to crop growth. The comparatively high level of magnesium is a contributory factor to the relatively low calcium ratio. These soils would benefit from the addition of calcic fertilisers.

Soil	Bicarb.	Extrac. K	DTPA-Extracta	ble (mg/kg)	Org	Total		
type	Р	(meq/	Manganese	Copper	Zinc	С	Ν	C:N
	(mg/kg)	100g)				%		
Basel	28 (M)	0.34(M)	38(M)	4.80(M)	1.2(M)	2.9(H)	0.30(H)	10
(site 753)								
Conondale	170(VH)	0.88(H)	15(M)	3.90(M)	5.4(H)	4.9(H)	0.46(H)	11
(site 759)								
Scrubby	35 (M)	0.98(H)	40(M)	0.98(M)	1.3(M)	2.8(H)	0.20(M)	14
(site 736)								

Table 5. Fertility and rating* of surface soils of the Kenilworth–Conondale area, north of Kilcoy–Woodford

*VH=Veryhigh, H=High, M=Medium, L=Low and VL=Very low. General rating according to Bruce and Rayment (1982)

Exchangeable potassium is 'sufficient' (>0.2 cmol(+)/kg) in the surface horizon of these soils but is deficient in the subsoils. The presence of a large amount of magnesium would generally restrict the uptake of both calcium and potassium. The presence of high amounts of exchangeable magnesium and sodium, in the absence of equivalent high amounts of calcium, is detrimental to the physical properties of these soils.

The *Basel* and *Conondale* soils tend to be sodic in the subsoils with an exchangeable sodium percentage (ESP) of 8 to 14 percent. The subsoil below 0.8 m is sodic with an ESP of 8 to 12 percent. Where the ESP is high, the dispersion ratio is above 0.8 indicating the highly dispersive nature of these soils in the horizons with high ESP. This is exacerbated by the presence of high amount of magnesium and low Ca/Mg ratio with the exchange complex dominated by magnesium and sodium.

	11		11	((100)		E 1	OFO	ECD	C1	CEC/
Soil type	рН	Exchang	Exchangeable cations (meq/100g)			Exch	CEC	ESP	Clay	CEC/
and depth										clay
(m)		Ca	Mg	Na	K	Ca:Mg	(meq/	%	%	ratio
			Ũ			Ũ	100g)			
Basel (site 753)	(Mottled	, Self-mulchi	ng, Grey Vert	osol; non-grav	velly, fine, m	edium fine, v	very deep)*			
0-0.1	6.4	4.1	9.1	0.92	0.43	0.5	32	3	33	1.0
0.2-0.3	7.5	7.5	19.0	2.40	0.21	0.4	31	8	56	0.6
0.5-0.6	8.4	6.4	20.0	4.30	0.09	0.3	30	14	52	0.6
0.8-0.9	8.4	7.7	26.0	4.50	0.13	0.3	39	12	ND	NA
1.1-1.2	8.7	5.9	22.0	3.30	0.10	0.3	28	12	42	0.7
Conondale (si	ite 759) (Haplic, Eut	rophic, Brow	n Chromoso	ol; thick, no	n-gravelly,	clay loamy	y, clayey,	very deep)*	
0-0.1	6.1	6.8	4.2	0.19	0.60	1.6	27	1	28	1.0
0.2-0.3	6.3	6.5	6.4	0.40	0.21	1.0	24	2	37	0.6
0.5-0.6	7.6	10.0	13.0	1.30	0.10	0.8	27	5	47	0.6
0.8-0.9	8.1	11.0	15.0	2.10	0.10	0.7	26	8	40	0.7
1.1-1.2	8.5	8.4	12.0	2.30	0.10	0.7	20	12	36	0.6
Scrubby (site	<u>736)</u> (Haj	plic, Eutroph	nic, Red Ferro	sol; medium,	non-gravel	ly, clayey, cl	ayey, mode	erate)*		
0-0.1	6.2	3.9	2.0	0.11	1.00	2.0	7	2	33	0.2
0.2-0.3	5.8	2.7	1.5	0.09	0.31	1.8	5	2	50	0.1
0.5-0.6	5.9	1.8	2.6	0.09	0.20	0.7	6	2	60	0.1
0.8-0.9	5.7	1.3	2.7	0.09	0.29	0.5	5	2	58	0.1
1.1-1.2	5.3	0.54	1.8	0.08	0.10	0.3	3	3	53	0.1

Table 6. pH, exchangeable cations, cation exchange capacity (CEC) and clay content of soils in the Kenilworth–Conondale area, north of Kilcoy–Woodford

* Isbell, 1996

5. LAND EVALUATION

Land suitability for agriculture

A five-class land suitability classification, with suitability decreasing progressively from class 1 to class 5, was used in evaluating the lands of the Kilcoy–Woodford area. The land is assessed on the basis of a specified land use which allows optimum production with minimal degradation to the land resource in the long-term (Land Resource Branch Staff, 1990). The five classes of land suitability classification are briefly defined below:

Class 1	Suitable land with negligible limitations
Class 2	Suitable land with minor limitations
Class 3	Suitable land with moderate limitations
Class 4	Marginal land, presently unsuitable due to severe limitations
Class 5	Unsuitable land with extreme limitations that preclude its use

Lands of the Kilcoy–Woodford area were assessed for a selected range of climatically adapted crops. To determine the suitability of any parcel of land for a particular land use, it is necessary to consider the requirements for each land use. Soil and land attributes which cause less than optimum conditions for a particular land use are known as limitations. The main land use requirements and limitations for the selected crops are shown in Table 7.

The limitations of soil and land attributes of each mapping unit were matched with the requirements of each land use to depict, on the suitability map, the suitability of each mapping unit for a particular land use. The critical limits of soil and land attributes used to determine subclasses for each land use are generally based on Wilson (in press), Fisher and Baker (1990) and Capelin (1987).

In this study, lands on the terrace plains and adjoining low undulating rises of the Kilcoy–Woodford area were evaluated using the above procedure. The study area encompasses the lands with agricultural potential. The evaluation assesses the suitability of the lands for crops that are climatically suitable and also determines the agricultural land classes (DPI/DHLGP, 1993) which will impact on future land use and the protection of good quality agricultural land.

Limitations and land suitability assessment

Each unique map area (UMA) was assessed for its suitability for the climatically suitable crops: sorghum, maize, crucifers, potatoes, macadamia, citrus and rye grass. Suitability of each land use on each UMA is determined by the limitations (Table 7) in the subclass scale of 1 to 5. The limitations and critical limits used to determine their subclasses for each land use are detailed in Appendix 1.

The limitations and criteria in Appendix 1 were applied to each UMA in the land suitability assessment of the Kilcoy–Woodford area. The suitability of each UMA of the survey area for the range of crops considered is shown in Table 8. Areas of suitable land for the crops considered are shown in Table 9. A total of 33–37% of the area is suitable for sorghum,

maize, crucifers and potatoes. Only 20% and 13% of the area is suitable for citrus and macadamia respectively. Rye grass, being less demanding, can be grown on 74% of the area. Land suitability maps for these crops are available on request to Department of Natural Resources. Table 8 should be consulted for the suitability of each UMA for the various crops considered.

 Table 7. Land use requirements and limitations for crops considered in Kilcoy–Woodford area

Land use requirements	Limitations
Frost-free	frost (cf)
Adequate soil water supply	soil water availability (m)
Adequate soil aeration	wetness (w)
Adequate nutrient supply	nutrient deficiency (n)
Adequate soil depth for physical support	soil depth (d)
Minimum soil loss from erosion	water erosion (e)
Rock-free soil profile	rockiness (r)
Absence of damaging floods	flooding (f)
Land surface of acceptable slope for safe and efficient machinery use	slope (ts)

Severe limitations (subclasses 4 and 5) of each UMA for the crops considered in the area are shown in Appendices 2 and 3. UMAs not listed in these Appendices are considered suitable for the crops assessed. This list of severe limitations allows the land users to determine if any of the marginal mapping units (class 4) can be ameliorated and the estimated costs involved. Decisions may be affected by one or more of: introduction of any new technology, land pressure and price of commodity.

The suitability of the climatically adaptable crops in the Kilcoy–Woodford area listed in alphabetical order of the soil names is shown in Appendix 4.

In general, soils on the low terraces plains, *Basel, Bellbird, Cooeeimbardi, Conondale, Grigor and Harper*, are suitable for all the crops considered except tree crops. Because of impeded drainage, *Beausang, Cookes, Ottaba, Smokes, Spencer* and *Toogoolawah* soils are unsuitable for all crops except rye grass. The *Cressbrook* soils are unsuitable for most crops because of low moisture holding capacity and at some sites, stoniness.

Soils on undulating to rolling rises are not suitable for sorghum, maize, crucifers and potatoes mainly because of erosion hazard on the steep slope gradients. *Berrima, Bunya, Durundur, Deer, Glenfern, Kamerigo, Kenilworth, Kilcoy* and *Scrubby* soils are generally suitable for macadamia, citrus and rye grass. However, individual mapping units with excessive slope may render them unsuitable for these crops. *Boolumba, Jimna* and *Royston* soils generally occur on steep slopes and are unsuitable for all crops except rye grass.

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
1	Dd	4	4	4	4	3	3
2	Cn	3	3	3	5	4	3
3	Dd	5	5	5	4	4	4
4	Bd	3	2	2	5	5	2
5	Bd-Hp	3	3	3	5	5	3
6	Cr-Bd	4	3	4	5	5	3
7	Bd-Hp	3	2	3	5	5	2
8	Dd	5	5	5	4	4	4
9	Dd	5	5	5	3	3	3
10	Sk	4	4	4	5	5	3
10	Cr	4	3	4	4	3	3
12	Sc	5	5	5	4	4	4
12	Cr	1	3		5		3
13	Bd	3	2		5	5	2
14	Dd	5	5	5	3	3	3
15	Rd	3	3	2	5	5	3
10	Ch	3	3	2	5	5	3
17	Dd	5	5	5	3	3	3
10	Du	5	5	5	5	5	5
19			3	5	5	5	3
20	Bu	3	3	3	5	5	2
21	SK D 1	4	4	4	5	5	3
22	Dd	5	5	5	3	3	3
23	Dd	5	5	5	5	5	5
24	Dd	4	4	4	4	3	3
25	Bd	3	2	2	5	5	2
26	Bd	3	3	3	4	4	2
27	Wn3-Dd	5	5	5	3	3	3
28	Bd	3	3	2	5	5	3
29	Нр	3	3	2	5	5	3
30	Dd	4	4	4	4	3	3
31	Dd	5	5	5	4	4	4
32	Dd2	5	5	5	5	5	5
33	Bd	4	4	4	4	3	3
34	Gf2	4	4	4	4	3	3
35	Bd	4	4	4	4	3	3
36	Dd	5	5	5	4	4	4
37	Bd-Bg3	4	4	4	5	5	2
38	Dd	5	5	5	3	3	3
39	Bd	3	3	3	4	4	2
40	Dd	4	4	4	4	3	3
41	Gf2-Dd2	5	5	5	5	5	5
42	DAM	0	0	0	0	0	0
43	Bd	3	3	3	5	5	2
44	Dd	4	4	4	4	3	3
45	Dd	5	5	5	4	4	4
46	Bd	3	3	3	5	5	2
47	Gr	3	3	3	4	4	2
48	Wn2	5	5	5	4	4	4
49	Нр	3	3	3	5	5	2
50	Bg	4	4	4	5	5	3
51	Cr	4	3	4	5	4	3
52	Gf2	5	5	5	3	3	3

Table 8. Suitability of UMAs for selected crops in the Kilcoy–Woodford area

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
160	Ka2	5	5	5	3	3	3
161	D AM	0	0	0	0	0	0
162	Bs-Cb	3	3	3	5	5	3
163	Ky2-Kl2	5	5	5	3	3	3
164	Ky3-Ka3	5	5	5	3	3	3
165	DAM	0	0	0	0	0	0
166	Bd-Sp	4	4	4	5	5	3
167	Ky3-Kl3	5	5	5	3	3	3
168	Ot	4	4	4	5	5	2
169	Bs-Bd	3	3	3	5	5	3
170	Gr	3	3	3	5	4	3
171	Ky3	4	4	4	4	3	2
172	Bg	4	4	4	5	5	3
173	Ку	4	4	4	2	2	2
174	Ky2-Kl2	5	5	5	4	4	4
175	Ky-Kl	5	5	5	3	3	3
176	Ky-Ka2	5	5	5	3	3	3
177	Ky-Kl	5	5	5	3	3	3
178	Bs-Bd	3	3	3	5	5	3
179	Ку	4	4	4	4	3	2
180	Gl	2	3	2	5	4	3
181	Bd	3	2	2	5	5	2
182	Bu	4	4	4	4	3	3
183	Bd	3	2	2	5	5	2
184	Ky2	5	5	5	5	5	5
185	Bs-Hp	3	3	3	5	5	3
186	Ку	4	4	4	4	3	2
187	Hp2-Sp	4	4	4	5	5	3
188	Bu3	5	5	5	4	4	4
189	Нр	3	3	2	5	5	3
190	Ky-Ka3	5	5	5	3	3	3
191	Sp	4	4	4	5	5	3
192	Нр	3	2	2	5	5	2
193	Gy	3	3	3	5	4	3
194	Sp	4	4	4	5	5	3
195	Sp	4	4	4	5	5	3
196	Ka3	4	4	4	4	3	3
197	Bs	3	3	3	5	5	3
198	Kyl	5			4	4	4
199	Hy2	3	3	3	4	4	2
200	Hyi	4	4	4	4	4	3
201	Nn D 1	4	4	4	4	5	2
202	Bd	3	3	2	5	5	
203	Ку	4	4	4	4	5	2
204	пр	3	2	2	5	5	2
205	BS-BO	5	5	5	5	5	5
200	Kao-mni	<u> </u>	3	3	4 5	4 5	4
207	ISP IV11	<u> </u>	<u> </u>	<u> </u>	5	5	
208		5	5	<u> </u>	4	4	
209		0	2	2	U		
210	DS Rd	2	<u> </u>	<u> </u>	5	5	2
211	Du Dt2	5	 	 	5	5	2
212	Kl2] 3	1 3	1 3	3	3	1 5

Table 8. Cont...

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
213	Cb	3	3	3	5	5	3
214	Bs-Cb	3	3	3	5	5	3
215	Dr1	4	4	4	4	4	3
216	Bs	3	3	3	5	5	3
217	Dr3	4	4	4	3	3	2
218	Dr2-In3	5	5	5	3	3	3
219	Bd	3	2	2	5	5	2
220	Kv-Kl	5	5	5	4	4	4
220	Ry III Bd	3	2	2	5	5	2
221	DDF	0	0	0	0	0	0
222	Dr	3	3	4	4	3	2
223	Dr3	5	5	5	3	3	3
224	Be	3	3	3	5	5	3
225	DS Cn Ch	3	3	3	5	5	3
220	D_{π^2} D_{π^2}	5	5	5	5	5	5
227	DI3-DW2	3	2	3	3	3	3
220	Dw2	4	3	4	4 5	5	3
229	BS D-2	5	5	5	5	5	3
230	Dr2	5	5	5	4	4	4
231	Jn3	4	4	4	5	5	3
232	Hp-Bg	4	4	4	5	5	3
233	Dr	4	4	5	3	3	2
234	Dw2	5	5	5	5	5	5
235	Dw	4	4	5	4	3	3
236	Rt3	4	4	4	5	5	2
237	Dr2	5	5	5	3	3	3
238	Bs-Bd	3	3	3	5	5	3
239	K12	4	4	5	3	3	2
240	Bs-Hp	3	3	3	5	5	3
241	DAM	0	0	0	0	0	0
242	Ky-Kl	5	5	5	3	3	3
243	Bs-Sp	4	4	4	5	5	3
244	Bs	3	3	3	5	5	3
245	Pd3-Dw	5	5	5	4	4	4
246	Dw	4	4	5	4	3	3
247	Dw	5	5	5	5	5	5
248	Bs-Cn	3	3	3	4	4	3
249	Mo2-Dg1	4	4	4	4	4	3
250	Jn-Dr	4	4	4	5	5	3
251	Jn	4	4	4	5	5	3
252	Dr	3	3	4	4	3	2
253	Cn	3	3	3	5	4	3
254	Ot3	4	4	4	5	5	2
255	K1-Hs	5	5	5	4	4	4
256	Dd3	5	5	5	4	4	4
257	Bs-Bd	3	3	3	5	5	3
258	Ky-Kl2	4	4	4	4	3	3
259	Bs	3	3	3	5	5	3
260	K12	4	3	4	4	3	2
261	Bs	3	3	3	5	5	3
262	Dd3	5	5	5	3	3	3
263	Hn	3	2	2	5	5	2
264	Bd3	<u>3</u>	3	2	5	5	3
265	Gf	<u> </u>	4	<u> </u>	<u> </u>	3	3
200	1.51			· · ·		5	5

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
266	Sc	4	5	5	4	4	2
267	Sc	5	5	5	3	3	3
268	Cn-Hp2	3	3	3	5	4	3
269	Dd	5	5	5	3	3	3
270	Dd	4	4	4	4	3	3
271	Dd-Sc	5	5	5	4	4	4
272	Dd3	5	5	5	4	4	4
273	Cn	3	3	3	4	4	3
274	Dd	4	4	4	4	3	3
275	Dd3	5	5	5	 	4	4
275	Hp-Cr		3		1	1	3
270	Dd3	5	5	5			3
277	Cr.	3	3		5	3	3
270	Cr^2	4	3	4		-+	3
219	Cr Hp	4	5	- 4	4	3	3
200	СІ-пр		5	5	4	4	
201		5	5	5	5	5	5
282	Dd2	5	5	5	5	5	5
283	Da	4	4	4	4	3	3
284	Gy-Cn	4	4	4	5	5	3
285	Ek2-Gf2	4	4	5	5	5	3
286	Dd2	5	5	5	4	4	4
287	Dd2	5	5	5	3	3	3
288	Dd	4	4	4	4	3	3
289	Hy-Hy1	4	4	4	4	4	3
290	Gf2	4	4	4	4	3	3
291	Dd2	5	5	5	3	3	3
292	Bg3	4	4	4	5	5	3
293	Gf3	5	5	5	3	3	3
294	Ot-Bg	4	4	4	5	5	3
295	Sc	3	3	4	4	3	2
296	Hp-Bd	2	3	3	5	4	3
297	Ot	4	4	4	5	5	3
298	Cn2-Bg3	4	4	4	5	5	3
299	Gf-Rt2	5	5	5	5	5	4
300	Hy3	4	3	2	5	4	3
301	Bg	4	4	4	5	5	3
302	Bs	3	3	3	5	5	3
303	Bg	4	4	4	5	5	3
304	Cr1	4	4	4	4	4	3
305	Sk	4	4	4	5	5	3
306	Bg	4	4	4	5	5	3
307	Cr	4	3	4	5	4	3
308	Rσ	4	<u> </u>	4	5	5	3
309	Cr	4	3	4	5	4	3
310	Hy	3	3	2	5	4	3
311	Sc-Be	<u>5</u>		<u> </u>	<u> </u>	, २	3
312	Co	т Л	- т Л	<u>т</u> Л		5	2
312	Be		-+	2	5	5	2
313	D8 U ₂ 2	<u>З</u>	2 2	2	<u>З</u>	<u> </u>	3 2
215	Co	4	<u> </u>	S			2
216		4	4	4	<u> </u>	<u> </u>	2
217	ку И	4	4 5	4 5	4	5	2
317	ку с. р	5	5	5	3	5	3
318	5с-Во	4	4	4	4	3	2

-

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
319	Со	4	4	4	5	5	2
320	Bs	3	3	3	5	5	3
321	Kl3-Hs	4	4	4	4	3	3
322	DAM	0	0	0	0	0	0
323	J12-Hs2	4	4	5	5	5	2
324	Ky-Nn	5	5	5	4	4	4
325	Ky	4	4	4	4	3	2
326	Ky-Nn	5	5	5	4	4	4
327	Tw3	4	4	4	5	5	3
328	Ky-Nn	5	5	5	4	4	4
329	Ky	4	4	4	4	3	2
330	Tw3	4	4	4	5	5	2
331	Hv3	4	3	2	5	5	3
332	Rt2-Dd	4	4	4	5	5	3
333	Hv3	4	2	2	<u> </u>	<u> </u>	2
334	K ₉ 2	5	5	5	3	3	3
335	Ka2	3			3	3	3
336	Ka2 Ky		5	5	4	3	3
330	Re Bd	3	3	3			
337	Cf				5	3	3
330	Bd Cn	4	4	4	- 4	5	3
240	DAM	3	0	0	<u> </u>	<u> </u>	<u> </u>
241		5	5	5	5	5	0
242		5	<u> </u>	<u> </u>	5	<u> </u>	<u> </u>
242		0	2	2	5	5	0
243	DS CfD	5	5	5	3	3	3
245	GI2 Cr	3			3	3	2
345	Cn Cf2	3			4	4	3
340	012 D-2	4	4	4	4	3	3
347	Bes DAM	3	5	5	3	3	3
348	DAM D/2	<u> </u>			<u> </u>	<u> </u>	0
349	KI3	5	5	5	5	5	3
350		5	5	5	4	4	4
252	EK2-G12	5	5	5	5	5	4
352	GI2-Kt3	4	4	4	5	5	3
353		5	5	5	5	5	3
354	Da2	5	5	5	5	5	3
355	Hp	3	3	2	5	5	3
350	SK	4	4	4	5	5	3
357	Bg-Gy	4	4	4	5	5	3
358	DAM	0	0	0	0	0	0
359	Be	5	5	5	4	4	4
360	Dd2	5	5	5	4	4	4
361	Gf2	5	5	5	3	3	3
362	Cr	4	3	4	4	3	3
303	SK	4	4	4	5	5	3
364	UT	5	5	5	3	5	3
365	Ub	4	4	4	5	5	3
366	Gf2	5	5	5	3	3	3
367	Sk	4	4	4	5	5	3
368	Gf3-Dd2	5	5	5	3	3	3
369	Sk	4	4	4	5	5	3
370	Dd2-Gf3	5	5	5	4	4	4
371	Bs	3	3	3	5	5	3

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
372	DDE	0	0	0	0	0	0
373	Dd-Gf	5	5	5	3	3	3
374	PRISON	0	0	0	0	0	0
375	Pd3-Rt2	5	5	5	5	5	3
376	Gf2-Dd3	5	5	5	3	3	3
377	Cb-Sk	4	4	4	5	5	3
378	Bd-Cr	4	3	4	5	5	3
379	Gr	3	3	3	4	4	2
380	Dd	5	5	5	3	3	3
381	Bd	3	2	2	5	5	2
382	Bs-Bd	3	3	3	5	5	3
383	DAM	0	0	0	0	0	0
384	Dd2-Be2	5	5	5	4	4	4
385	Bd	3	2	2	5	5	2
386	Gy-Sp		<u> </u>		5	5	3
387	Be2	4	4			3	3
388	Dt2	5		5	5	5	3
389	In2	<u>5</u>	J	5	5	5	3
300	JII2 In	4	4		5	5	3
390	JII In2	4	4	5	5	5	3
391	JII2 In	4	4	3	5	5	3
392	JII Tw	4	4	4	5	5	2
204	Tw Do	4	4	4	5	5	2
205	DS D+2	3	3	3	5	5	2
200	KIS Cf	4	4	4	5	5	2
390	GUAND	4	4	4	5	5	3
397	SWAMP	0	0	0	0	0	0
398	Rt .	4	4	4	5	5	2
399	Bs-Hp	3	3	3	5	5	3
400	1W	4	4	4	5	5	2
401	BO	4	4	4	4	3	2
402	5с-Воз	5	5	5	5	5	3
403		4	4	4	5	5	2
404	SWAMP	0	0		0	0	0
405	Da2	4	4	4	4	5	3
406	1W	4	4	4	5	5	2
407	BS	5	3	3	5	5	3
408	BO	5	5	5	3	3	3
409	BO	4	4	4	4	5	2
410	BS-GI	3	5	5	5	5	5
411	DDE	0	0		0	0 5	0
412	KI	4	4	4	5	5	2
413	Co3	4	4	4	5	5	3
414	Dr3	4	4	5	3	3	2
415	Dd2	5	5	5	3	3	3
416	Bd	3	2	2	5	5	2
41/	Kt2	5	5	5	5	5	4
418	Bd	3	3	2	5	5	3
419	Hy-Cr	4	3	4	5	4	3
420	SKI	4	4	4	5	5	3
421	Bol	5	5	5	4	4	3
422	Dd3-Ek1	4	4	4	4	4	3
423	Cn-Sp	4	4	4	5	5	3
424	Dd	5	5	5	3	3	3

Table 8. Cont...

UMA	Soils	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
425	Bs-Cr	4	3	4	5	4	3
426	Sp	4	4	4	5	5	3
427	Cr	4	3	4	4	3	3
428	Dd2	5	5	5	5	5	5
429	Bd	3	2	2	5	5	2
430	Bd	3	2	2	5	5	2
431	Dd	4	4	4	4	3	3
432	DAM	0	0	0	0	0	0
433	Ky2-Ka2	5	5	5	5	5	5
434	Jl1-Ek2	5	5	5	5	5	5
435	DDE	0	0	0	0	0	0
436	DAM	0	0	0	0	0	0

Table 9. Areas suitable for sorghum, maize, crucifers, potatoes, macadamia, citrus and rye grass in the Kilcoy–Woodford area (ha)

Suitability	sorghum	crucifers	potatoes	macadamia	citrus	rye grass
	maize					
2	117.3	947.1	1655.7	31.7	31.7	3069.3
3	6079.5	5968.9	4660.5	2365.8	3617.2	10 475.0
Total Suitable	6196.8	6916.0	6316.2	2397.5	3648.9	13 814.3
(% Total Area)	(33)	(37)	(34)	(13)	(19)	(74)
4	4981.2	4270.7	4599.6	5398.3	4764.7	3465.1
5	7528.5	7519.7	7790.6	10 910.7	10 292.9	1427.1

Agricultural land classes

Four classes of agricultural land have been defined for Queensland (DPI/DHLGP, 1993); for convenience these are reproduced here:

Class A	Crop land - Land suitable for current and potential crops with limitations to production which range from none to moderate levels.
Class B	Limited crop land - Land that is marginal for current and potential crops due to severe limitations; and suitable for pastures. Engineering and/or agronomic improvements may be required before the land is considered suitable for cropping.
Class C	Pasture land - Land suitable only for improved or native pastures due to limitations which preclude continuous cultivation for crop production; but some areas may tolerate a short period of ground disturbance for pasture establishment.
Class D	Non-agricultural land - Land not suitable for agricultural uses due to extreme limitations. This may be undisturbed land with significant habitat, conservation and/or catchment values or land that may be unsuitable because of very steep slopes, shallow soils, rock outcrop or poor drainage.

With reference to the *Planning Guidelines* (DPI/DHLGP, 1993) no class A land (**Crop land**) was found in the area. Class B land (**Limited crop land**) occupies the bulk of the area at about 8860 ha or 47%. Class C land (**Pasture land**) and class D (**Non agricultural land**) each occupy about 26% of the area. Agricultural land classes of the Kilcoy–Woodford area in the order of UMA number are shown in Table 10. This information is also depicted on the Agricultural Land Classes map at 1:50 000 which is included in this report

In assigning the agricultural land classes for each UMA all the crops considered in the previous section on land suitability assessment are considered. The main reason for having a large area of class B land is that soils on plains and terraces are unsuitable for the tree crops considered because of flooding hazard. If tree crops are not considered, most of the Class B land would be Class A.

The assessment and assignment of the agricultural land classes arrived at is from a medium intensity survey at the scale of 1:50 000 which is sufficient for planning purposes. In assessing individual applications for subdivision, a more detailed survey is usually necessary.

UMA	Soils	Ag class
1	Dd	С
2	Cn	В
3	Dd	D
4	Bd	B
	Dd Un	D
5	барт	D C
6	Cr-Ba	
7	Bd-Hp	В
8	Dd	D
9	Dd	В
10	Sk	C
11	Cr	В
12	Sc	D
13	Cr	С
14	Bd	B
15	DJ	D
15	Du D 1	D
16	ва	В
17	Cb	В
18	Dd	В
19	Dd	D
20	Bd	В
21	Sk	С
22	Dd	В
23	Dd	D
23	Dd	- C
24	Du Dd	D
25	DU D 1	D
26	Bd	В
27	Wn3-Dd	В
28	Bd	В
29	Нр	В
30	Dd	C
31	Dd	D
32	Dd2	D
33	Bd	С
34	Gf2	C
35	Rd	C
35	Du Du	
30	Da	D
37	Bd-Bg3	С
38	Dd	В
39	Bd	В
40	Dd	C
41	Gf2-Dd2	D
42	DAM	
43	Bd	В
44	Dd	С
	Dd	
43	D4	
40	Du Ca	D
47	Gr	В
48	Wn2	D
49	Нр	В
50	Bg	С
51	Cr	С
52	Gf2	В
53	Bg3	С
5.0	Wn	B
54	Hn	B
55	rip Cr	<u>а</u>
56		В
57	Bs-Bd	В
58	Dd-Gf	В
59	Dd2-Gf2	D

UMA	Soils	Ag class
60	Нр	В
61	Dd	С
62	Dd-Gf	С
63	Dd-Gf	В
64	Dd-Gf	D
65	Dd-Gf	D
66	Bd	В
67	Dd-Gf	В
68	Bd	В
69	Bd	В
70	Bd	В
71	Bd	В
72	Dd	D
73	Sk-Bg3	С
74	Wn	D
75	Dd3	D
76	Cn	В
77	Bd-Bs	В
78	Dd	D
79	Gf	В
80	Hy-Cr	С
81	Hy	В
82	Ky	В
83	Rt3	С
84	Dd-Rt3	D
85	Rt-Gf	С
86	Bd	В
87	Bd	В
88	Bd	В
89	Ку	В
90	Kl	В
91	Bs	В
92	K1	В
93	K12	В
94	Bs	В
95	K1	В
96	Cn	В
97	Bd	В
98	Dd3	D
99	Gf3	С
100	Sk	С
101	Dd2	В
102	Gf3	В
103	Dd3	D
105	Bd	В
106	Dd	D
107	Bd	B
108	Rt-Gf	С
109	Rt-Gf	C
110	Rt3	C
111	Bd	В
112	GI3-Dd3	ע
113	GI3	В
114	חת	ע
115	Da Pd	D
110	Dd	B
11/	Dd	D
110	Bd	
117	20	

UMA	Soils	Ag class
120	Нр	В
121	Dd	D
122	Dd1	D
123	Bs	В
124	Rt	С
125	DAM	
126	Kv	В
127	Kv-Kl	D
128	Kv-Kl	С
129	Bd	В
130	DAM	
131	Rt-Sc	С
132	Ky-Kl	D
133	DAM	
134	K11	С
135	Bd	В
136	Ky-Kl	С
137	Bs-Cb	В
138	Cr-Ot	С
139	Ky-Kl	С
140	Ky-Kl	D
141	DAM	
142	DAM	
143	Ky-Kl3	D
144	Ky-Kl	В
145	Ky	С
146	Nn	С
147	Bs	В
148	Ку	В
149	Bg	С
150	Ky	С
151	Ку	С
152	Ку	В
153	Cn	В
154	Gr-Hp	В
155	Ka2	С
156	Ka2-Ky1	С
157	Bs	В
158	Bg	С
159	Ky1	С
160	Ka2	В
161	DAM	
162	Bs-Cb	В
163	Ky2-Kl2	В
164	Ky3-Ka3	В
165	DAM	
166	Bd-Sp	С
167	Ky3-Kl3	В
168	Ot	С
169	Bs-Bd	В
170	Gr	В
171	Ky3	С
172	Bg	С
173	Ку	В
174	Ky2-Kl2	D
175	Ky-Kl	В
176	Ky-Ka2	

Table 10. Agricultural land classes of soils and UMA in the Kilcoy–Woodford area
Table 10. Cont			
UMA	Soils	Ag class	
177	Ky-Kl	В	
178	Bs-Bd	В	
179	Ку	С	
180	Gl	В	
181	Bd	В	
182	Bu	С	
183	Bd	В	
184	Ky2	D	
185	BS-Hp	B	
180	Ky Hn2-Sn	C	
188	Bu3	D	
189	Hp	B	
190	Ky-Ka3	В	
191	Sp	С	
192	Нр	В	
193	Gy	В	
194	Sp	С	
195	Sp	С	
196	Ka3	С	
197	Bs	В	
198	Ky1	D	
199	Hy2	B	
200	Hyi	C	
201	NII Rd	C B	
202	Bu Ky	D C	
203	Hn	B	
205	Bs-Bd	B	
206	Ka3-Nn1	D	
207	Sp	С	
208	K11	С	
209	DAM		
210	Bs	В	
211	Bd	В	
212	Rt2	C	
213	Cb Do Ch	В	
214	Ds-C0	D C	
213	Bs	C B	
210	Dr3	B	
218	Dr2-Jn3	В	
219	Bd	В	
220	Ky-Kl	D	
221	Bd	В	
222	DDE		
223	Dr	В	
224	Dr3	B	
225	BS Cr. Cl	В	
226	UN-UD	D D	
227	Dw?	B	
220	Bs	B	
230	Dr2	D	
231	Jn3	С	
232	Hp-Bg	С	
233	Dr	В	
234	Dw2	D	
235	Dw2	D	
236	Rt3	С	

UMA	Soils	Ag class
237	Dr2	В
238	Bs-Bd	В
239	K12	В
240	Bs-Hp	В
241	DAM	
242	Ky-Kl	В
243	Bs-Sp	С
244	Bs	В
245	Pd3-Dw	D
246	Dw	С
247	Dw	D
248	Bs-Cn	B
249	Mo2-Dg1	C
250	Jn-Dr	C
251	In	C
252	Dr	B
252	Cn	B
253	Ot3	Б С
254	KI He	D
255	Dd2	D
250		D
257	DS-DU V.:. V12	D C
258	Ky-Ki2	C D
259	BS VIO	B
260	KI2	В
261	Bs	В
262	Dd3	В
263	Нр	В
264	Bd3	В
265	Gf	С
266	Sc	С
267	Sc	В
268	Cn-Hp2	В
269	Dd	В
270	Dd	С
271	Dd-Sc	D
272	Dd3	D
273	Cn	В
274	Dd	С
275	Dd3	D
276	Hp-Cr	С
277	Dd3	В
278	Cr	С
279	Cr3	В
280	Cr-Hp	С
281	Dd	В
282	Dd2	D
283	Dd	С
284	Gy-Cn	С
285	Ek2-Gf2	С
286	Dd2	D
287	Dd2	В
288	Dd	С
289	Hy-Hy1	С
290	Gf2	С
291	Dd2	С
2.92	Bg3	C
293	Gf3	B
293	Ot-Bø	 C
204	Sc D5	B
295	Hp-Bd	B
270	r ~~	-

UMA	Soils	Ag class
297	Ot	C
298	Cn2-Bg3	C
299	Gf_Rt2	D
300	Hv3	B
301	Rg	C
302	Be	B
302	Ba	Б С
303	Dg Cr1	C
305	Sk	C
305	Ba	C
307	Dg Cr	C
209	CI Da	C
308	Dg Cr	C
210		C D
211	Ro Po	Б С
212	ос-ве	C
212	C0 Do	C D
214	D8	ם ס
215	пуз	ט ר
315		C
316	Ку Ил	L D
317	Ky G D	В
318	SC-ВО	
319	Co	C
320	Bs	B
321	KI3-Hs	C
322	DAM	9
323	JI2-Hs2	C
324	Ky-Nn	D
325	Ky K N	C
326	Ky-Nn	D
327	Tw3	C
328	Ky-Nn	D
329	Ку	C
330	Tw3	C
331	Hy3	В
332	Rt2-Dd	C
333	Hy3	В
334	Ka2	В
335	Ka	C
336	Ka2-Ky	D
337	B8-B0	В
338	UI DIC	U
339	ва-Cn DAM	В
340	DAM	0
341	HS-JII	U
342	DAM	D
343	DS DS	В D
344	Gf2	В
345	Cn	В
346	G12	U D
347	вез	В
348	DAM D+2	C
349		
350	GIZ-DdZ	D D
351	EK2-Gf2	
352	Gf2-Rt3	U D
353		В
354	Dd2	В
355	Нр	В

Table	10. Cont					
UMA	Soils	Ag class		UMA	Soils	
356	Sk	С		383	DAM	
357	Bg-Gy	С	İ	384	Dd2-Be2	D
358	DAM		ĺ	385	Bd	В
359	Be	D	Ī	386	Gy-Sp	C
360	Dd2	D	ĺ	387	Be2	C
361	Gf2	В		388	Rt2	C
362	Cr	С	Ī	389	Jn2	C
363	Sk	С	ĺ	390	Jn	C
364	Gf	В	Ī	391	Jn2	C
365	Ob	С		392	Jn	C
366	Gf2	В	Ī	393	Tw	C
367	Sk	С	Ī	394	Bs	В
368	Gf3-Dd2	В	Ī	395	Rt3	C
369	Sk	С	Ī	396	Gf	C
370	Dd2-Gf3	D		397	SWAMP	
371	Bs	В	Ī	398	Rt	C
372	DDE			399	Bs-Hp	В
373	Dd-Gf	В	Ī	400	Tw	С
374	PRISON			401	Во	C
375	Pd3-Rt2	С	Ī	402	Sc-Bo3	В
376	Gf2-Dd3	В		403	Tw	C
377	Cb-Sk	С	Ī	404	SWAMP	Γ
378	Bd-Cr	С		405	Dd2	C
379	Gr	В		406	Tw	C
380	Dd	В	Ī	407	Bs	В
381	Bd	В		408	Bo	В
382	Bs-Bd	В]	409	Bo	C

UMA	Soils	Ag class
383	DAM	
384	Dd2-Be2	D
385	Bd	В
386	Gy-Sp	С
387	Be2	С
388	Rt2	С
389	Jn2	С
390	Jn	С
391	Jn2	С
392	Jn	С
393	Tw	С
394	Bs	В
395	Rt3	С
396	Gf	С
397	SWAMP	
398	Rt	С
399	Bs-Hp	В
400	Tw	С
401	Bo	С
402	Sc-Bo3	В
403	Tw	С
404	SWAMP	
405	Dd2	С
406	Tw	С
407	Bs	В
408	Bo	В
409	Bo	С

UMA	Soils	Ag class
410	Bs-Gr	В
411	DDE	
412	Rt	С
413	Co3	С
414	Dr3	В
415	Dd2	В
416	Bd	В
417	Rt2	С
418	Bd	В
419	Hy-Cr	С
420	Sk1	С
421	Bo1	С
422	Dd3-Ek1	С
423	Cn-Sp	С
424	Dd	В
425	Bs-Cr	С
426	Sp	С
427	Cr	В
428	Dd2	D
429	Bd	В
430	Bd	В
431	Dd	С
432	DAM	
433	Ky2-Ka2	D
434	Jl1-Ek2	D
435	DDE	
436	DAM	

Assessment for on-site sewage effluent disposal

In unsewered communities, adequate treatment of household sewerage effluent is necessary to avoid eutrophication and the health risks associated with contamination of the water by bacteria, viruses and nutrients.

There are five main methods used for on-site treatment and disposal of wastewater (Eades, 1994). These methods include:

- (i) septic tank with an absorption trench,
- (ii) septic tank with an evapotranspiration field,
- (iii) septic tank followed by aerobic sewerage treatment and surface irrigation with the product,
- (iv) septic tank followed by sand filtration and surface irrigation, and
- (v) composting toilet.

The first method is the most widely used and is therefore the main method evaluated in this report. Solids and liquids are separated within the tank so that the effluent discharged from the system will have a lower level of pollutants. The breakdown of organic matter in the system relies on the action of anaerobic bacteria. Sludge and solids remaining in the tank contain high concentrations of metals, nutrients (nitrate and phosphate), grease, bacteria and viruses. This material must be periodically pumped out and disposed off-site (Eades, 1994).

Australian Standards Association (1994) requires the land capability of a proposed site for a septic tank be properly investigated. Effective on-site treatment and disposal requires suitable soil and landform characteristics.

Factors affecting land suitability for effluent disposal

A number of site characteristics influence the suitability for effluent disposal. They are:-

- (i) *soil* permeability, texture, coherence, coarse fragments content and depth to impermeable layer,
- (ii) *landform* slope, rock outcrops,
- (iii) *flood hazard* dependent upon landform, position and observation of flood events,
- (iv) groundwater conditions depth to watertable, and
- (v) *surface water conditions* proximity to streams or water storages.

These factors have varying importance. Soil characteristics determine the absorption ability of a site and together with landform, determines the purification ability. Soil and landform characteristics also determine the ease of excavation for tank and drainage installation. Risk of water pollution is governed by all five characteristics with the soil being the most limiting. Soil characteristics determine what kind of treatment system can be used and what additional measures must be taken to avoid long-term pollution (Eades, 1994).

Suitability criteria

Table 12 lists suitability ratings used to assess the appropriateness of a septic tank and absorption trench for effluent disposal at a given site.

Attribute		Suitability rating	
	Good	Fair	Poor
Slope (%)	0-8	8-15	>15
Drainage	Well drained	Imperfectly drained	Poorly drained
Flooding	None	<1 in 100 years	>1 in 100 years
Depth to seasonal water table (cm)	>120	90-120	<90
Depth to impermeable layer (cm)	>150	100-150	<100
Gravel (%)	<20	20 - 40	>40
Stones (%)	<10	10 - 30	>30
Boulders (%)	<0.2	0.2-2	>2
Rock outcrop (%) (of soil surface)	<0.1	0.1-1	>1
Dispersible clays (%)	<10	10-16	>16
Shrink-swell potential (%)	<12	12-20	>20

 Table 11. Suitability rating for on-site effluent disposal

(all waste septic tank absorption field for single family dwelling) (after Rowe et al., 1981)

In addition to the criteria listed in Table 11, soil permeability must be within the acceptable range of 5 to 60 mm/day listed in Australian Standards Association (1994). Eades (1995) recommends a more conservative range of 5 to 30 mm/day if there is a potential for groundwater contamination.

Permeability was not measured in this study due to restraints in time and resources. Instead, approximate permeability was derived from texture classes using Table 12.

Table 12.	Representative s	soil permeabili	ity for	various so	il textural classes	
-----------	------------------	-----------------	---------	------------	---------------------	--

Textural classes	Typical permeability (mm/day)
Sand	600-6000 (1200)*
Sandy loam	300-1800 (600)*
Loam	200-300 (300)*
Clay Loam	60-360 (180)*
Silty Clay	7-120 (60)*
Clay	2.4-24 (12)*

(Hansen et al. 1979, as quoted in Australian Standards Association, 1994) *Representative values - AS1547 - 1994

Suitability of soils for sewage effluent disposal

The 1:50 000 scale of mapping is not adequate to assess the suitability of an individual site for sewage effluent disposal. Site-percolation tests and soil descriptions must be obtained at each proposed site in accordance with Australian Standards Association (1994). The mapping scale presented in this report does give some indication of the suitability of each UMA for on-site effluent disposal, for planning purposes.

Soils on alluvial plains and terraces

Soils on the low-lying plains and terraces, Basel(Bs), Beausang(Bg), Bellbird(Bd), Conondale(Cn), Cooeeimbardi(Cb), Cookes(Co), Cressbrook(Cr), Grigor(Gr), Gunyah(Gy), Harper(Hp), Honey(Hy), Obi(Ob), Ottaba(Ot), Smokes(Sk), Spencer(Sp) and Toogoolawah(Tw) are subject to a flood frequency of greater than one in 100 years. They are generally unsuitable for effluent disposal.

Soils on undulating to rolling rises

The suitability of soils on undulating to rolling rises for effluent disposal generally depends on the slope and soil depth. The main characteristics used to consider their suitability for effluent disposal are shown in Tables 11 and 12. Individual sites should be tested before a decision can be made on the suitability for effluent disposal.

Boolumba(Bo), Glenfern(Gf) Jimna(Jn) and Scrubby(Sc) soils are generally suitable for effluent disposal. Boolumba soils being heavy textured are expected to have a permeability of less than 5 mm/day and therefore unsuitable for effluent disposal. Soils tests should be conducted to find out the true permeability. Royston(Rt) soils are general suitable but some sites are unsuitable because of shallow soil depth. Berrima(Be), Durundu(Dd)r, Deer(Dr), Dunwich(Dw) and Bunya(Bu) soils are suitable for effluent disposal if the slope is less than 15% and soil depth more than 1.0 m. Kamerigo(Ka), Kenilworth(Kl), Kilcoy(Ky) and Winya(Wn) soils are generally unsuitable for effluent disposal because of shallow soil depth.

The use of septic tanks followed by aerobic sewage treatment and surface irrigation may be a more satisfactory means of disposal, provided that: sufficient irrigation area is available, aerobic sewage treatment plants are regularly serviced and that the slope is <10%.

6. ACKNOWLEDGMENTS

The authors would like to thank:

- Bernie Powell for guidance and project supervision
- Gavin Peck for technical assistance and digitising the land resource information
- John Myers and Sheryl Crofts of Spatial Information and Mapping, Resource Sciences Centre for final preparation of the maps and figures
- Ben Harms for technical editing
- Val Eldershaw, Bernie Powell, Charlie Ellis, and Diane Bray for the final editing and production of this report

7. REFERENCES

- Australian Standards Association (1994). Disposal systems for effluents from domestic premises. AS1547.
- Baker, D.E. and Eldershaw, V.J. (1993). Interpreting Soil Analyses for Agricultural Land Use in Queensland. Queensland Department of Primary Industries, Project Report QO93014.
- Bruce, R.C. and Rayment, G.E. (1982). Analytical methods and interpretations used by the Agricultural Chemistry Branch for Soil and Land Use Survey. Queensland Department of Primary Industries, Agricultural Chemistry Branch, Bulletin QB82004
- Bureau of Meteorology (1995). Climatic data. National Climatic Database.
- Capelin, M.A. (1987). *Horticulture Land Suitability Study, Sunshine Coast, South-east Queensland*. Queensland Department of Primary Industries, Land Resources Bulletin QV87001.
- Donnollan, T.E., McClurg, J.I. and Tucker, R.J. (1990). Soils and land suitability of Leichhardt Downs Section: Burdekin River Irrigation area, Part B: A detailed Report. Queensland Department of Primary Industries, Land Resources Bulletin QV90002
- DPI/DHLGP (1993). *Planning Guidelines: The Identification of Good Quality Agricultural Land.* Department of Primary Industries and Department of Housing, Local Government and Planning.
- Eades, G. W. (1994). Atkinson Dam Declared catchment area. Report on land suitability for effluent disposal. QDPI Water Resources, Geotechnical Services Group, Engineering Services.
- Eades, G.W. (1995). Cedar Pocket Dam Declared catchment area. Report on land suitability for effluent disposal. QDPI Water Resources, Geotechnical Services Group, Engineering Services.
- Fisher, C.A. and Baker, D.E. (1990). *Soils and land suitability of the animal genetics Centre, Warrill View.* Queensland Department of Primary Industries, Research Establishments Publication QR90001.
- Hansen, V.E., Israelen, O.W. and Stringham, G.E. (1979). Irrigation principles and practices. (4th ed) Wiley, New York.
- Harms, B.P. and Pointon, S.M. (in preparation). *Land resource assessment of the Brisbane Valley*, Department of Natural Resources.
- Isbell, R.F. (1996). The Australian Soil Classification. CSIRO, Australia.

- Land Resource Branch Staff (1990). *Guidelines for agricultural land evaluation in Queensland*. Queensland Department of Primary Industries, Information Series QI9005.
- Loi, J.K., Malcolm, D.T., Peck, G.A. and Armbruster, J.V. (1997). Land Resource Assessment SEQ2001 - Soils and land suitability the Kenilworth–Conondale area, South East Queensland. Department of Natural Resources, Land Resources Bulletin DNRQ97165.
- Martin, J.E., Willmont, W.F. and O'Flynn, M.L. (1976-77). 1:100 000 Nambour Sheet. Regional geology modified from the Gympie 1:250 000 Sheet, Geological Survey of Queensland, Department of Mines, Brisbane.
- McDonald, R.C., Isbell, R.F., Speight, J.G., Walker, J. and Hopkins, M.S. (1990). Australian Soil and Land Survey Field Handbook. 2nd ed., Inkata Press, Melbourne
- Regional Planning Advisory Group (1993). A Policy Paper of the SEQ2001 Project: Agricultural Land
- Reid, R.E. (1988). Soil Survey Specifications, in Australian Soil and Land Survey Handbook: Guidelines for Conducting Surveys (eds. Gunn, R.H., Beattie, J.A., Reid, R.E. and van de Graaff, R.H.M.), Inkata Press, Melbourne.
- Rowe, R., Howe, D. and Alley, N. (1981). *Guidelines for land capability assessment in Victoria*. Soil Conservation Authority, Victoria.
- State Planning Policy 1/92. *Development and Conservation of Agricultural Land*. Queensland Department of Housing, Local Government and Planning.
- Wilson, P.R. (in press). Soils and Irrigated Agricultural Suitability of the Beaver Rock Road Area, Maryborough. Queensland Department of Natural Resources.

Appendix 1. Land suitability classification for selected crops

Land suitability classification for selected crops

This classification summarises land use limitations and describes the effects of each limitation on :

- plant growth, machinery use and land degradation
- how the soil and land attributes are assessed and
- how the limitation classes are determined

Climate –*frosts* (*cf*)

Effect

Frosts may suppress growth, reduce yield and kill plants.

Assessment

The incidence and severity of frosts are used to assess affected areas.

Limitation class determination

Crop tolerance and local experience of the incidence and severity of frosts.

I	Attribute level	Frost limitation classes for selected land uses				
		maize,	crucifers,	macadamia	citrus	potatoes
		sorghum	rye grass			
cf0	no frosts	1	1	1	1	1
cf1	light frosts	1	1	3	1	1
cf2	moderate frosts	1	2	4	3	2
cf3	severe frosts	1	3	5	4	2

Note : seasonal adaptation is not considered, for example, summer crops are not grown in winter. Although frosts seriously effect winter crops such as potatoes, planting can usually be timed so as to avoid the stages when plants are most susceptible to frosts.

Moisture availability (m)

Effect

Plant yield will be decreased by periods of water stress during critical crop growth periods. Availability of suitable irrigation water is critical for certain crops.

Assessment

Soil morphological properties together with measured PAWC have been used to assess the amount of water in a soil available to plants over the rooting depth.

PAWC is based on predicted values, modelling information, and actual measurements.

Limitation class determination

PAWC classes relate to the frequency of irrigation for irrigation only.

- m1 ... >125mm plant available water per metre
- m2 ...100-125mm plant available water per metre
- m3 ...75-100mm plant available water per metre
- m4 ...50-75mm plant available water per metre
- m5 ...<50mm plant available water per metre

	Attribute level	Moisture limitation classes for selected land uses			
		macadamia, citrus,	maize, sorghum	potatoes	rye grass
		crucifers			
m1	>125mm	1	1	1	1
m2	100-125mm	1	2	2	1
m3	75-100mm	1	3	2	2
m4	50-75mm	2	4	2	2
m5	<50mm	3	4	3	3

Nutrient deficiency -(n)

Effects

A shortage (deficiency) or oversupply (toxicity) of mineral nutrients.

Assessment

Based on the need for fertiliser treatment additional to standard application rates and practices. Assessment is determined by the pH of the upper part of the B horizon. pH values less than 5.5 and greater than 8.0 can cause deficiencies and toxicities of certain nutrients. For simplicity, other nutrient indicators such as total P, cation exchange capacity and organic carbon have not been included. This assessment assumes that most of these can be ameliorated.

Limitation class determinations

Documented data relating high and low pH to nutrient deficiencies and toxicity.

Attribute level		Nutrient deficiency limitation classes for selected land uses
		All crops
n1	pH <4.5	4
n2	pH 4 .5-5.5	3
n3	рН 5.6-6.5	2
n4	рН 6.6-7.5	1
n5	pH 7.6-8.0	2
n6	pH 8.1-8.5	3
n7	pH >8.5	4

Wetness (w)

Effect

Waterlogged soils reduce plant growth and delay effective machinery operations.

Assessment

Internal and external drainage are assessed. Indicator attributes of internal drainage and permeability include texture, structure, colour, mottles, segregations and impermeable layers. Drainage class and soil permeability (McDonald *et al.*, 1990) are assessed in relation to plant rooting depth. Slope and topographic position determine external drainage. Groundwater data for selected soils is also used. The diagnostic land attributes are: drainage class, permeability and plant rooting depth requirement.

Limitation class determination

Consultation and crop tolerance information relating growth suppression to economic yield. Severity of effect concerning delays in machinery operation.

Perme	eability class	Draina	age class			
v	very slowly permeable (<5 mm/day)	1	very poorly drained			
S	slowly permeable (5-50 mm/day)	2	poorly drained			
m	moderately permeable (50-500 mm/day)	3	imperfectly drained			
h	highly permeable (>500 mm/day)	4	moderately well drained			
		5	well drained			
		6	rapidly drained			

Attribute level	Wet	mess limitation classes for	or selected land uses	
	maize, sorghum	macadamia, citrus	crucifers, potatoes	rye grass
wбh	1	1	1	1
w5h	1	1	1	1
w5m	1	2	1	1
w4h	1	2	1	1
w4m	2	3	2	1
w4s	3	3	3	2
w4v	3	4	3	2
w3h	2	3	2	1
w3m	3	4	3	2
w3s	4	5	4	2
w3v	4	5	4	3
w2h	5	5	5	3
w2m	5	5	5	3
w2s	5	5	5	3
w2v	5	5	5	3
w1h	5	5	5	4
w1m	5	5	5	4
w1s	5	5	5	4
w1v	5	5	5	4

Flooding (f)

Effect

Yield reduction or plant death caused by anaerobic conditions and/or high water levels and/or silt deposition during inundation, as well as physical removal or damage by flowing water. Flowing water can also cause erosion.

Assessment

The effect of flooding on individual UMAs is difficult to predict. Flooding frequency has been used to distinguish between suitable and unsuitable land in extreme frequency situations only for intolerant crops. The diagnostic land attributes are: flooding frequency and topographic position.

Limitation class determination

Consultation with landholders.

Department of Natural Resources streamflow records.

	Attribute level	Flood	ing limitation classes	s for selected land u	ses
		maize,	macadamia,	potatoes,	rye grass
		sorghum	citrus	crucifers	
f0	No Flooding	1	1	1	1
f1	Flooding frequency	2	4	1	1
	less than 1 in 10				
	years				
f2	Flooding frequency	3	5	1	1
	between 1 in 10 and				
	1 in 5 years				
f3	Flooding frequency	4	5	2	2
	exceeds 1 in 5 years				

Landscape complexity (*x*)

Effect

An area of suitable land may be too small to justify its use as a separate management unit for a particular land use. This occurs where there is considerable soil complexity and/or topographic dissection.

Assessment

Once limitation classes for each UMA are determined, UMAs with one or more of the following are assessed:

- Area of contiguous suitable soil less than minimum production area
- Complex topography/soil

When the area of contiguous suitable soil in a UMA is less than a minimum production area, the area of any contiguous suitable soil in adjacent UMA is also considered on the assessment.

Limitation class determination

The minimum production areas for each land use are determined by consultation.

Minimum production area: The minimum area of land which is practicable to utilise for a particular land use.

A	Attribute level	Landsca	Landscape complexity limitation classes for selected land uses												
	and	maize,	macadamia,	potatoes	crucifers	rye grass									
Proc	duction area (ha)	sorghum	citrus												
x1	>10	1	1	1	1	1									
x2	5 to 10	4	1	1	1	1									
x3	2.5 to 5	5	1	2	1	1									
x4	1.5 to 2.5	5	3	3	1	1									
x5	<1.5	5	4	4	4	2									

Soil physical condition (p)

Effect

Germination and seedling development problems associated with adverse conditions of the surface soil such as hard setting, coarse aggregates and clays with strong consistency.

Difficulties in achieving favourable tilth with machinery on soils with a narrow moisture range.

Harvesting difficulty and quality of subsurface harvest material affected by soil adhesiveness.

Assessment

Soils with indicative morphological properties are evaluated in the context of local experience or knowledge of plant characteristics; for example; seed size, tuberous roots.

Local experience indicates problems associated with certain soils; for example narrow moisture range for working.

Limitation class determination

Plant tolerance limits and requirements in relation to seed germination and harvesting are matched with soil properties and supported by local experience.

Local opinion of the severity of the problem of narrow moisture range.

	Attribute level	Physical condition limitation classes for selected land uses										
		maize sorghum	macadamia	potatoes	rye grass							
		crucifers	citrus									
p0	No restriction	1	1	1	1							
p1	Slightly adhesive (SCL-LC)	1	1	2	1							
p2	Moderately adhesive (LC-LMC)	1	1	3	1							
p3	Strongly adhesive (MC-HC)	1	1	4	1							
p4	Narrow moisture	3	1	3	1							
	range (Cracking HC)											
p5	Hard setting massive	3	1	3	3							
	soil (LS-SL surface)											
рб	Hard setting soils with narrow	4	1	4	3							
	moisture range and sodic soils											

Rockiness (r)

Effect

Coarse (rock) fragments and $rock^1$ in the plough zone interfere with the efficient use of agricultural machinery. Rock in the plough zone also causes excess wear of tillage implements and reduces the plant available water content. Surface rock interferes with the harvesting of peanuts, soybean, potatoes, below-ground vegetables and navy beans.

Assessment

Based on the size, abundance and distribution of coarse fragments in the plough layer; and with machinery and farmer tolerance of increasing size and content of coarse fragments.

Limitation class determination

Consultation, particularly related to farmers' tolerance (the latter is implicitly related to profitability and technological capability).

	Attribute	level	Rockiness limitation classes for selected land use									
	Amount %	Size	maize	macadamia	crucifers	potatoes	rye					
			sorghum	citrus		_	grass					
r0			1	1	1	1	1					
r1p	<2%	6-20mm	1	1	1	2	1					
r1g	•	20-60mm	1	1	2	3	1					
r1c	"	60-200mm	2	1	3	4	1					
r1s	"	200 to 600mm	3	1	4	5	1					
r1b	"	>600mm	4	2	5	5	2					
r2p	2-10%	6-20mm	1	1	2	3	1					
r2g	"	20-60mm	2	1	3	4	1					
r2c	"	60-200mm	3	1	4	5	1					
r2s	"	200 to 600mm	4	2	5	5	2					
r2b	"	>600mm	5	3	5	5	3					
r3p	10 to 20%	6-20mm	2	1	3	4	1					
r3g	"	20-60mm	3	1	4	5	2					
r3c	"	60-200mm	4	2	5	5	2					
r3s	"	200 to 600mm	5	3	5	5	3					
r3b	•	>600mm	5	4	5	5	4					
r4p	20 to 50%	6-20mm	3	1	4	5	2					
r4g	"	20-60mm	4	2	5	5	3					
r4c	"	60-200mm	5	3	5	5	3					
r4s	"	200 to 600mm	5	4	5	5	4					
r4b	"	>600mm	5	5	5	5	5					
r5p	>50%	6-20mm	5	5	5	5	5					
r5g	"	20-60mm	5	5	5	5	5					
r5c	"	" 60-200mm		5	5	5	5					
r5s	" 200 to 600mm		5	5	5	5	5					
r5b	"	>600mm	5	5	5	5	5					

¹ Coarse fragments are particles greater than 2 mm and not continuous with underlying bedrock. Rock is defined as being continuous with bedrock.

Effect

Land degradation and long-term productivity decline will occur on unprotected arable land because of excessive soil erosion.

Assessment

Soil loss will depend on soil erodibility and land slope for a particular crop and surface management system. For each soil type there is a maximum slope above which soil loss cannot be reduced to acceptable levels by erosion control measures.

Limitation class determination

Slope limits are determined in consultation with soil conservation and research personnel, research and extension agronomists, farmers and the use of computer models. The implication of the limitation class for simple slopes¹ are:

- e1 Surveyed row direction only required
- e2 Conventional structures, surface management practices² and pastures phase
- e3 e2 measures with a predominance of pasture phase
- e4 Predominance of pasture phase with occasional cropping
- e5 Non-arable land

Attribute level	Slope %	Erosion limitation	ation classes for selected land uses						
		maize, sorghum, crucifers	macadamia, citrus, rye grass	potatoes,					
deep, well structured	d, uniform-textur	ed clay soils							
e1a	0>2%	1	1	1					
e2a	2>5%	2	1	3					
e3a	5-8%	3	1	4					
e4a	8>12%	4	2	4					
e5a	12>15%	4	2	5					
еба	15>20%	5	3	5					
e7a	20>30%	5	4	5					
e8a	30>%	5	5	5					
coarse-, medium-tex	tured soils; grada	ational and non sodic texture c	ontrast soils						
e1b	0>2%	2	1	2					
e2b	2>5%	3	1	3					
e3b	5>8%	4	2	4					
e4b	8>12%	4	3	5					
e5b	12>15%	5	3	5					
e6b	15>20%	5	4	5					
e7b	20>%	5	5	5					
sodic texture contrast	st soils								
e1c	0>1%	1	1	2					
e2c	1>3%	2	1	3					
e3c	3>5%	3	2	4					
e4c	5>8%	4	3	5					
e5c	8>12%	5	4	5					
ебс	12>%	5	5	5					

 1 Simple slopes - slopes with a constant fall and direction. Complex slopes with variable fall and direction are not suitable for conventional erosion control structures - a topographic (T) limitation has been applied to land with complex slopes. 2 Surface management practices. A range of options aimed at minimum soil disturbance combined with retention of harvest

residue material as a surface cover.

Effect

Shallow soils limit root proliferation and anchorage, and reduce moisture storage. Plants may be uprooted during strong winds.

Assessment

Effective soil depth: depth to weathered rock, pan or impermeable layer.

Limitation class determination

Consultation.

A	Attribute level	Soil depth limitation classes for selected land uses									
		macadamia,	other crops								
		citrus									
d1	1>m	1	1	1							
d2	0.6>1.0m	2	1	1							
d3	0.4>0.6m	3	2	3							
d4	0.3>0.4m	4	3	4							
d5	<0.3m	5	4	5							

Appendix 2. Main limitations of UMAs unsuitable for sorghum, maize, crucifers and potatoes

UMA	Soils	m	w	d	r	e	x	SG MZ	w	d	r	e	CS	w	d	f	r	e	РТ
1	Dd					4		4				4	4				4	4	4
3	Dd					5		5				5	5				4	5	5
6	Cr-Bd	4						4									4		4
8	Dd					5		5				5	5				4	5	5
9	Dd					5		5				5	5				4	5	5
10	Sk		4					4	4				4	4					4
11	Cr	4						4									4		4
12	Sc					5		5				5	5				4	5	5
13	Cr	4					5	5									4		4
15	Dd					5		5				5	5				4	5	5
18	Dd					5		5				5	5				4	5	5
19	Dd					5		5				5	5				4	5	5
21	Sk		4					4	4				4	4					4
22	Dd					5		5				5	5				4	5	5
23	Dd					5		5				5	5				4	5	5
24	Dd					4	5	5				4	4				4	4	4
27	Wn3-Dd	4				5		5				5	5					5	5
30	Dd					4		4				4	4				4	4	4
31	Dd					5		5				5	5				4	5	5
32	Dd2	4				5		5				5	5				4	5	5
33	Bd					4		4				4	4				4	4	4
34	Gf2	4				4		4				4	4					4	4
35	Bd					4		4				4	4				4	4	4
36	Dd					5		5				5	5				4	5	5
37	Bd-Bg3							4	4				4	4					4
38	Dd					5		5				5	5				4	5	5
40	Dd					4	5	5				4	4				4	4	4
41	Gf2-Dd2	4				5		5				5	5				4	5	5
44	Dd					4		4				4	4				4	4	4
45	Dd					5		5				5	5				4	5	5
48	Wn2	4				5		5				5	5					5	5
50	Bg		4					4	4				4	4					4
51	Cr	4						4									4		4
52	Gf2	4				5		5				5	5					5	5
53	Bg3	4	4					4	4				4	4					4
54	Wn	4				5		5				5	5					5	5
56	Cr	4						4									4		4
58	Dd-Gf					5		5				5	5				4	5	5
59	Dd2-Gf2	4				5		5				5	5				4	5	5
61	Dd					4	4	4				4	4				4	4	4
62	Dd-Gf					4		4				4	4				4	4	4
63	Dd-Gf					5		5				5	5				4	5	5

Appendix 2. Main limitations of UMAs unsuitable for sorghum, maize, crucifers and potatoes

UMA	Soils	m	w	d	r	e	x	SG MZ	w	d	r	e	CS	w	d	f	r	e	РТ
64	Dd-Gf					5		5				5	5				4	5	5
65	Dd-Gf					5		5				5	5				4	5	5
67	Dd-Gf					5		5				5	5				4	5	5
72	Dd					5		5				5	5				4	5	5
73	Sk-Bg3		4					4	4				4	4					4
74	Wn	4				5		5				5	5					5	5
75	Dd3			4		5		5		4		5	5		4		4	5	5
78	Dd					5		5				5	5				4	5	5
79	Gf	4				5		5				5	5					5	5
80	Hy-Cr	4						4									4		4
82	Ку					5		5				5	5					5	5
83	Rt3		4			4		4	4			4	4	4			4	4	4
84	Dd-Rt3		4			5		5	4			5	5	4				5	5
85	Rt-Gf		4			4		4	4			4	4	4				4	4
89	Ку					5		5				5	5					5	5
90	Kl						5	5										4	4
92	K1																	4	4
93	K12					4		4				4	4					5	5
95	K1																	4	4
97	Bd						4	4											
98	Dd3					5		5				5	5				4	5	5
99	Gf3	4				4		4				4	4					4	4
100	Sk		4					4	4				4	4					4
101	Dd2	4				5		5				5	5				4	5	5
102	Gf3	4				5		5				5	5					5	5
103	Dd3					5		5				5	5				4	5	5
106	Dd					5		5				5	5				4	5	5
108	Rt-Gf		4			4		4	4			4	4	4				4	4
109	Rt-Gf		4			5		5	4			5	5	4				5	5
110	Rt3		4			4		4	4			4	4	4			4	4	4
112	Gf3-Dd3					5		5				5	5				4	5	5
113	Gf3	4				5		5				5	5					5	5
114	Dd					5		5				5	5				4	5	5
115	Dd					5		5				5	5				4	5	5
117	Dd					5		5				5	5				4	5	5
118	Dd					5		5				5	5				4	5	5
121	Dd					5		5				5	5				4	5	5
122	Dd1	4	4	4		5		5	4	4		5	5	4	4		4	5	5
124	Rt		4			4		4	4			4	4	4				4	4
126	Ky					5		5				5	5					5	5
127	Ky-Kl					5		5				5	5					5	5
128	Ky-Kl					4	4	4		T		4	4					4	4

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	x	SG MZ	w	d	r	e	CS	w	d	f	r	e	РТ
131	Rt-Sc		4			4		4	4			4	4	4				4	4
132	Ky-Kl					5		5				5	5					5	5
134	K11	4		4			5	5		4			4					4	4
136	Ky-Kl					4		4				4	4					4	4
138	Cr-Ot	4	4					4	4				4	4			4		4
139	Ky-Kl					4		4				4	4					4	4
140	Ky-Kl					5		5				5	5					5	5
143	Ky-Kl3					5		5				5	5					5	5
144	Ky-Kl					5		5				5	5					5	5
145	Ку					4		4				4	4					4	4
146	Nn					4		4				4	4				4	4	4
148	Ку					5		5				5	5					5	5
149	Bg		4			4		4	4			4	4	4				4	4
150	Ку					4		4				4	4					4	4
151	Ку					4	4	4				4	4					4	4
152	Ку					5		5				5	5					5	5
155	Ka2	4				4		4				4	4					4	4
156	Ka2-Ky1				4	5		5				5	5		4			5	5
158	Bg		4					4	4				4	4					4
159	Ky1	4		4		4		4		4		4	4		4			4	4
160	Ka2	4				5		5				5	5					5	5
163	Ky2-Kl2	4				5		5				5	5					5	5
164	Ky3-Ka3					5		5				5	5					5	5
166	Bd-Sp		4					4	4				4	4					4
167	Ky3-K13					5		5	ĺ			5	5					5	5
168	Ot		4					4	4				4	4					4
171	Ky3					4		4				4	4					4	4
172	Bg		4					4	4				4	4					4
173	Ky					4		4				4	4					4	4
174	Ky2-K12	4		4		5		5		4		5	5		4			5	5
175	Ky-Kl					5		5				5	5					5	5
176	Ky-Ka2					5		5	ĺ			5	5					5	5
177	Ky-Kl					5		5				5	5					5	5
179	Ky					4		4				4	4					4	4
182	Bu					4		4				4	4					4	4
184	Ky2	4				5		5				5	5					5	5
186	Ky					4	4	4	ĺ			4	4					4	4
187	Hp2-Sp		4					4	4				4	4					4
188	Bu3	4				5		5	Í			5	5					5	5
190	Ky-Ka3					5		5	Í			5	5					5	5
191	Sp		4					4	4				4	4					4
194	Sp		4					4	4	Í			4	4					4

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	x	SG MZ	w	d	r	e	CS	w	d	f	r	e	РТ
195	Sp		4					4	4				4	4					4
196	Ka3	4				4		4				4	4					4	4
198	Ky1	4		4		5		5		4		5	5		4			5	5
200	Hy1	4		4			4	4		4			4		4				4
201	Nn					4	4	4				4	4				4	4	4
203	Ку					4		4				4	4					4	4
206	Ka3-Nn1	4		4		5		5		4		5	5		4			5	5
207	Sp		4					4	4				4	4					4
208	K11	4		4		5		5		4		5	5		4			5	5
212	Rt2	4	4			5		5	4			5	5	4			4	5	5
215	Dr1	4		4				4		4			4		4			4	4
217	Dr3					4		4				4	4					4	4
218	Dr2-Jn3					5		5				5	5					5	5
220	Ky-Kl					5		5				5	5						5
223	Dr																	4	4
224	Dr3					5		5				5	5					5	5
227	Dr3-Dw2	4				5		5				5	5					5	5
228	Dw2	4						4										4	4
230	Dr2	4				5		5				5	5					5	5
231	Jn3	4	4			4		4	4			4	4	4				4	4
232	Hp-Bg		4					4	4				4	4					4
233	Dr					4		4				4	4					5	5
234	Dw2	4				5		5				5	5					5	5
235	Dw					4		4				4	4					5	5
236	Rt3		4			4		4	4			4	4	4			4	4	4
237	Dr2	4				5		5				5	5					5	5
239	K12	4				4	5	5				4	4					5	5
242	Ky-Kl					5		5				5	5					5	5
243	Bs-Sp		4					4	4				4	4					4
245	Pd3-Dw					5		5				5	5				4	5	5
246	Dw					4	4	4				4	4					5	5
247	Dw					5		5				5	5					5	5
249	Mo2-Dg1	4		4		4		4		4		4	4		4			4	4
250	Jn-Dr	4	4			4		4	4			4	4	4				4	4
251	Jn		4					4	4				4	4				4	4
252	Dr																	4	4
254	Ot3		4					4	4				4	4					4
255	Kl-Hs					5		5				5	5					5	5
256	Dd3					5		5				5	5				4	5	5
258	Ky-Kl2	4				4		4				4	4					4	4
260	K12	4					4	4										4	4
262	Dd3					5		5				5	5				4	5	5

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	x	SG MZ	w	d	r	e	CS	w	d	f	r	e	PT
264	Bd3	4						4											
265	Gf					4		4				4	4					4	4
266	Sc				4	4		4			5	4	5				5	4	5
267	Sc					5		5				5	5				4	5	5
269	Dd					5		5				5	5				4	5	5
270	Dd					4		4				4	4				4	4	4
271	Dd-Sc					5		5				5	5				4	5	5
272	Dd3					5		5				5	5				4	5	5
274	Dd					4		4				4	4				4	4	4
275	Dd3					5		5				5	5				4	5	5
276	Hp-Cr	4						4									4		4
277	Dd3					5	4	5				5	5				4	5	5
278	Cr	4						4									4		4
279	Cr3	4						4									4		4
280	Cr-Hp	4			4			4			5		5				5		5
281	Dd					5		5				5	5				4	5	5
282	Dd2	4				5	4	5				5	5				4	5	5
283	Dd					4		4				4	4				4	4	4
284	Gy-Cn		4					4	4				4	4					4
285	Ek2-Gf2	4	4			4		4	4			4	4	4				5	5
286	Dd2	4				5		5				5	5				4	5	5
287	Dd2	4				5	4	5				5	5				4	5	5
288	Dd					4		4				4	4				4	4	4
289	Hy-Hy1	4						4		4			4		4				4
290	Gf2	4				4		4				4	4					4	4
291	Dd2	4				5		5				5	5				4	5	5
292	Bg3		4					4	4				4	4					4
293	Gf3	4				5		5				5	5					5	5
294	Ot-Bg		4					4	4				4	4					4
295	Sc						4	4									4		4
297	Ot		4					4	4				4	4					4
298	Cn2-Bg3	4	4					4	4				4	4					4
299	Gf-Rt2		4			5		5	4			5	5	4				5	5
300	Hy3	4						4											
301	Bg		4					4	4				4	4					4
303	Bg		4					4	4				4	4					4
304	Cr1	4		4				4		4			4		4		4		4
305	Sk		4					4	4				4	4					4
306	Bg		4					4	4				4	4					4
307	Cr	4						4									4		4
308	Bg		4					4	4				4	4					4
309	Cr	4						4									4		4

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	X	SG MZ	W	d	r	e	CS	w	d	f	r	e	РТ
311	Sc-Be					4		4					4				4	4	4
312	Со		4					4	4				4	4					4
314	Hy3	4						4						1					
315	Co		4					4	4				4	4					4
316	Ky					4		4				4	4					4	4
317	Ky					5		5				5	5					5	5
318	Sc-Bo					4		4				4	4					4	4
319	Со		4					4	4				4	4					4
321	K13-Hs					4		4				4	4					4	4
323	J12-Hs2	4	4			4		4	4		4	4	4	4			5	4	5
324	Ky-Nn					5		5				5	5				4	5	5
325	Ky					4	4	4				4	4					4	4
326	Ky-Nn					5		5				5	5				4	5	5
327	Tw3		4					4	4				4	4					4
328	Ky-Nn					5		5				5	5				4	5	5
329	Ky					4		4				4	4					4	4
330	Tw3		4					4	4				4	4					4
331	Hy3	4						4											
332	Rt2-Dd		4			4		4	4			4	4	4				4	4
333	Hy3	4						4											
334	Ka2	4				5		5				5	5					5	5
335	Ka	4				4		4				4	4					4	4
336	Ka2-Ky	4				5		5				5	5					5	5
338	Gf	4				4		4				4	4					4	4
341	Hs-Jl1	4	4	4		5		5	4	4	4	5	5	4	4		5	5	5
344	Gf2	4				5		5				5	5					5	5
346	Gf2	4				4		4				4	4					4	4
347	Be3	4				5		5				5	5					5	5
349	Rt3		4			5		5	4			5	5	4			4	5	5
350	Gf2-Dd2	4				5		5				5	5				4	5	5
351	Ek2-Gf2	4	4			5		5	4			5	5	4				5	5
352	Gf2-Rt3	4	4			4		4	4			4	4	4				4	4
354	Dd2	4				5		5				5	5				4	5	5
356	Sk		4					4	4				4	4					4
357	Bg-Gy		4					4	4				4	4					4
359	Be					5		5				5	5					5	5
360	Dd2	4				5		5				5	5				4	5	5
361	Gf2	4				5		5				5	5					5	5
362	Cr	4						4									4		4
363	Sk		4					4	4				4	4					4
364	Gf					5		5				5	5					5	5
365	Ob		4					4	4				4	4				4	4

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	X	SG MZ	W	d	r	e	CS	W	d	f	r	e	РТ
366	Gf2	4				5		5				5	5					5	5
367	Sk		4			-	4	4	4				4	4					4
368	Gf3-Dd2	4				5	-	5				5	5				4	5	5
369	Sk		4			-		4	4				4	4			-		4
370	Dd2-Gf3	4				5		5				5	5				4	5	5
373	Dd-Gf					5		5				5	5				4	5	5
375	Pd3-Rt2		4			5		5	4			5	5	4			4	5	5
376	Gf2-Dd3	4				5		5		-		5	5				4	5	5
377	Cb-Sk		4					4	4				4	4					4
378	Bd-Cr	4						4									4		4
380	Dd					5		5				5	5				4	5	5
381	Bd						5	5											
384	Dd2-Be2	4				5		5				5	5					5	5
386	Gy-Sp		4					4	4				4	4					4
387	Be2	4				4		4				4	4					4	4
388	Rt2	4	4			5		5	4			5	5	4			4	5	5
389	Jn2		4			4		4	4			4	4	4				5	5
390	Jn		4					4	4				4	4				4	4
391	Jn2		4			4		4	4			4	4	4				5	5
392	Jn		4					4	4				4	4				4	4
393	Tw		4					4	4				4	4					4
395	Rt3		4			4		4	4			4	4	4			4	4	4
396	Gf		4					4	4				4	4					4
398	Rt		4			4	4	4	4			4	4	4				4	4
400	Tw		4					4	4				4	4					4
401	Bo					4		4				4	4					4	4
402	Sc-Bo3					5		5				5	5				4	5	5
403	Tw		4					4	4				4	4					4
405	Dd2	4				4	5	5				4	4				4	4	4
406	Tw		4					4	4				4	4					4
408	Bo					5		5				5	5					5	5
409	Bo					4		4				4	4					4	4
412	Rt		4			4		4	4			4	4	4			4	4	4
413	Co3		4					4	4				4	4					4
414	Dr3					4		4				4	4					5	5
415	Dd2	4				5		5				5	5				4	5	5
416	Bd						5	5											
417	Rt2	4	4			5		5	4			5	5	4			4	5	5
419	Hy-Cr	4						4									4		4
420	Sk1	4	4	4				4	4				4	4	4				4
421	Bo1	4		4		5		5				5	5		4			5	5
422	Dd3-Ek1	4		4		4		4				4	4		4		4	4	4

Appendix 2. Cont...

UMA	Soils	m	w	d	r	e	X	SG	W	d	r	e	CS	W	d	f	r	e	PT
								MZ											
423	Cn-Sp		4					4	4				4	4					4
424	Dd					5		5				5	5				4	5	5
425	Bs-Cr	4						4									4		4
426	Sp		4					4	4				4	4					4
427	Cr	4						4									4		4
428	Dd2	4	4		4	5		5	4		5	5	5	4			5	5	5
431	Dd					4	5	5				4	4				4	4	4
433	Ky2-Ka2	4				5		5				5	5					5	5
434	Jl1-Ek2	4	4	4		5		5	4	4	4	5	5	4	4		5	5	5

Appendix 2. Cont...

Appendix 3. Main limitations of UMAs unsuitable for macadamia, citrus and rye grass

UMA	Soils	c	w	d	f	e	Macadamia	c	w	d	f	e	Citrus	e	Rye grass
1	Dd	4					4								
2	Cn	5			4		5				4		4		
3	Dd					4	4					4	4	4	4
4	Bd	4			5		5				5		5		
5	Bd-Hp	5			5		5	4			5		5		
6	Cr-Bd	4			5		5				5		5		
7	Bd-Hp	4			5		5				5		5		
8	Dd					4	4					4	4	4	4
10	Sk	4	5		4		5		5		4		5		
11	Cr	4					4								
12	Sc					4	4					4	4	4	4
13	Cr	5					5	4					4		
14	Bd	4			5		5				5		5		
16	Bd	5			5		5	4			5		5		
17	Cb	4	4		5		5		4		5		5		
19	Dd					5	5		4		5		5		
20	Bd	4			5		5				5		5		
21	Sk	4	5		4		5		5		4		5		
23	Dd					5	5					5	5	5	5
24	Dd	4					4								
25	Bd	4			5		5				5		5		
26	Bd	4			4		4				4		4		
28	Bd	5			5		5	4			5		5		
29	Нр	5			5		5	4			5		5		
30	Dd	4					4								
31	Dd					4	4					4	4	4	4
32	Dd2					5	5					5	5	5	5
33	Bd	4					4								
34	Gf2	4					4								
35	Bd	4					4								
36	Dd					4	4					4	4	4	4
37	Bd-Bg3	4	5		4		5		5		4		5		
39	Bd	4			4		4				4		4		
40	Dd	4					4								
41	Gf2-Dd2					5	5					5	5	5	5
43	Bd	4			5		5				5		5		
44	Dd	4					4								
45	Dd	1				4	4					4	4	4	4
46	Bd	4			5		5				5		5		
47	Gr	4			4		4				4		4		
48	Wn2		İ			4	4					4	4	4	4
49	Hp	4	ĺ		5		5				5		5		
50	Bg	4	5		4		5		5		4		5		

Appendix 3. Main limitations of UMAs unsuitable for macadamia, citrus and rye grass

UMA	Soils	c	w	d	f	e	Macadamia	c	w	d	f	e	Citrus	e	Rye grass
51	Cr	5					5	4					4		
53	Bg3	4	5		4		5		5		4		5		
55	Нр	5			5		5	4			5		5		
56	Cr	4					4								
57	Bs-Bd	5			5		5	4			5		5		
59	Dd2-Gf2					5	5					5	5	5	5
60	Нр	5			5		5	4			5		5		
61	Dd	4					4								
62	Dd-Gf	4					4								
64	Dd-Gf					4	4					4	4	4	4
65	Dd-Gf					4	4					4	4	4	4
66	Bd	4			5		5				5		5		
68	Bd	5			5		5	4			5		5		
69	Bd	4			5		5				5		5		
70	Bd	4			5		5				5		5		
71	Bd	4			5		5				5		5		
72	Dd					5	5					5	5	5	5
73	Sk-Bg3	5	5		4		5	4	5		4		5		
74	Wn					5	5					5	5	5	5
75	Dd3			4		4	4					4	4	4	4
76	Cn	5			4		5	4			4		4		
77	Bd-Bs	5			5		5	4			5		5		
78	Dd					4	4					4	4	4	4
80	Hy-Cr	5			4		5	4			4		4		
81	Hy	4			4		4					4	4		
83	Rt3	4	5				5		5				5		
84	Dd-Rt3		5			4	5		5			4	5	4	4
85	Rt-Gf	4	5				5		5				5		
86	Bd	4			5		5				5		5		
87	Bd	4			5		5				5		5		
88	Bd	5			5		5	4			5		5		
90	K1	4					4								
91	Bs	4			5		5				5		5		
92	K1	4					4								
94	Bs	5			5		5	4			5		5		
95	K1	4					4								
96	Cn	4			4		4				4		4		
97	Bd	4			5		5				5	ĺ	5		
98	Dd3					4	4					4	4	4	4
99	Gf3	4					4					ĺ			
100	Sk	4			4		4		5		4		5		
103	Dd3					4	4					4	4	4	4
105	Bd	4			5		5				5	ĺ	5		

Appendix 3. Cont...

UMA	Soils	c	W	d	f	e	Macadamia	c	W	d	f	e	Citrus	e	Rye grass
106	Dd					4	4					4	4	4	4
107	Bd	4			5		5				5		5		
108	Rt-Gf	4	5				5		5				5		
109	Rt-Gf		5				5		5				5		
110	Rt3	4	5				5		5				5		
111	Bd	5			5		5	4			5		5		
112	Gf3-Dd3					4	4					4	4	4	4
114	Dd					4	4					4	4	4	4
116	Bd				5		5				5		5		
118	Db					4	4					4	4	4	4
119	Bd	4			5		5				5		5		
120	Нр	5			5		5	4			5		5		
121	Dd					4	4					4	4	4	4
122	Dd1		5	4		5	5		5			5	5	5	5
123	Bs	5			5		5	4			5		5		
124	Rt	4	5				5		5				5		
127	Ky-Kl					4	4					4	4	4	4
128	Ky-Kl	4					4								
129	Bd	4			5		5				5		5		
131	Rt-Sc	4	5				5		5				5		
132	Ky-Kl					4	4					4	4	4	4
134	K11	4		4			4			4			4		
135	Bd	4			5		5				5		5		
136	Ky-Kl	4					4								
137	Bs-Cb	5	4		5		5	4	4		5		5		
138	Cr-Ot	5	5				5	4	5				5		
139	Ky-Kl	4					4								
140	Ky-Kl3					4	4					4	4	4	4
143	Ky-Kl3					4	4					4	4	4	4
145	Ку	4					4								
146	Nn	4					4								
147	Bs	5			5		5	4			5		5		
149	Bg	4	5		4		5		5		4		5		
150	Ку	4					4								
151	Ку	4					4								
153	Cn	4			4		4				4		4		
154	Gr-Hp	5			5		5	4			5		5		
155	Ka2	4					4								
156	Ka2-Ky1			4			4			4			4		
157	Bs	4			5		5				5		5		
158	Bg	5	5		4		5	4	5		4		5		
159	Ky1	4		4			4			4			4		
162	Bs-Cb	4	4		5		5		4		5		5		

Appendix 3. Cont...

UMA	Soils	c	w	d	f	e	Macadamia	c	W	d	f	e	Citrus	e	Rye grass
166	Bd-Sp	5	5		5		5	4	5		5		5		
168	Ot	4	5				5		5				5		
169	Bs-Bd	5			5		5	4			5		5		
170	Gr	5			4		5	4			4		4		
171	Ky3	4					4								
172	Bg	4	5		4		5		5		4		5		
174	Ky2-Kl2			4		4	4			4		4	4	4	4
178	Bs-Bd	5			5		5	4			5		5		
179	Ку	4					4								
180	Gl	5			4		5	4			4		4		
181	Bd	4			5		5				5		5		
182	Bu	4					4								
183	Bd	4			5		5				5		5		
184	Ky2					5	5					5	5	5	5
185	Bs-Hp	5			5		5	4			5		5		
186	Ку	4					4								
187	Hp2-Sp	4	5		4		5		5		4		5		
188	Bu3					4	4					4	4	4	4
189	Нр	5			5		5	4			5		5		
191	Sp	4	5		4		5		5		4		5		
192	Нр	4			5		5				5		5		
193	Gy	5			4		5	4			4		4		
194	Sp		5		4		5		5		4		5		
195	Sp	5	5		4		5	4	5		4		5		
196	Ka3	4					4								
197	Bs	5					5	4			5		5		
198	Ky1			4		4	4			4		4	4	4	4
199	Hy2	4			4		4				4		4		
200	Hy1	4		4	4		4			4	4		4		
201	Nn	4					4								
202	Bd	5			5		5	4			5		5		
203	Ку	4					4								
204	Нр	4			5		5				5		5		
205	Bs-Bd	5			5		5	4			5		5		
206	Ka3-Nn1			4		4	4			4		4	4	4	4
207	Sp	5	5		4		5	4	5		4		5		
208	K11			4			4			4			4		
210	Bs	5			5		5	4			5		5		
211	Bd	4			5		5				5		5]	
212	Rt2		5				5		5				5		
213	Cb	5	4		5		5	4	4		5		5		
214	Bs-Cb	5	4		5		5	4	4		5		5		
215	Dr1	4		4			4			4			4		

Appendix 3. Cont...

UMA	Soils	c	w	d	f	e	Macadamia	c	w	d	f	e	Citrus	e	Rye grass
216	Bs	5			5		5	4			5		5		
219	Bd	4			5		5				5		5		
220	Ky-Kl					4	4					4	4	4	4
221	Bd	4			5		5				5		5		
223	Dr	4					4								
225	Bs	4			5		5				5		5		
226	Cn-Cb	4	4		5		5		4		5		5		
227	Dr3-Dw2					5	5					5	5	5	5
228	Dw2	4					4								
229	Bs	4			5		5				5		5		
230	Dr2					4	4					4	4	4	4
231	Jn3		5				5		5				5		
232	Hp-Bg	5	5		4		5	4	5		4		5		
234	Dw2					5	5					5	5	5	5
235	Dw	4					4								
236	Rt3	4	5				5		5				5		
238	Bs-Bd	5			5		5	4			5		5		
240	Bs-Hp	5			5		5	4			5		5		
243	Bs-Sp	5	5		5		5	4	5		5		5		
244	Bs	4			5		5				5		5		
245	Pd3-Dw					4	4					4	4	4	4
246	Dw	4					4								
247	Dw					5	5					5	5	5	5
248	Bs-Cn	4			4		4				4		4		
249	Mo2-Dg1	4		4			4			4			4		
250	Jn-Dr		5				5		5				5		
251	Jn	4	5		4		5		5		4		5		
252	Dr	4					4								
253	Cn	5			4		5	4			4		4		
254	Ot3	4	5		4		5		5		4		5		
255	K1-Hs					4	4					4	4	4	4
256	Dd3					4	4					4	4	4	4
257	Bs-Bd	4			5		5				5		5		
258	Ky-Kl2	4					4								
259	Bs	4			5		5				5		5		
260	K12	4					4								
261	Bs	5			5		5	4			5		5		
263	Нр	4			5		5				5		5		
264	Bd3	5			5		5	4			5		5		
265	Gf	4					4								
266	Sc	4	4				4		4				4		
268	Cn-Hp2	5			4		5	4			4		4		
270	Dd	4					4								

Appendix 3. Cont...

UMA	Soils	c	w	d	f	e	Macadamia	c	w	d	f	e	Citrus	e	Rye grass
271	Dd-Sc					4	4					4	4	4	4
272	Dd3					4	4					4	4	4	4
273	Cn	4			4		4				4		4		
274	Dd	4					4								
275	Dd3					4	4					4	4	4	4
276	Hp-Cr	4			4		4				4		4		
278	Cr	5					5	4					4		
279	Cr3	4					4								
280	Cr-Hp	4			4		4				4		4		
282	Dd2					5	5					5	5	5	5
283	Dd	4					4								
284	Gy-Cn	5	5		4		5	4	5		4		5		
285	Ek2-Gf2		5				5		5				5		
286	Dd2					4	4					4	4	4	4
288	Dd	4					4								
289	Hy-Hy1	4		4	4		4			4	4		4		
290	Gf2	4					4								
292	Bg3	4	5		4		5		5		4		5		
294	Ot-Bg	5	5		4		5	4	5		4		5		
295	Sc	4					4								
296	Hp-Bd	5			4		5	4			4		4		
297	Ot	5	5		4		5	4	5		4		5		
298	Cn2-Bg3	4	5		4		5		5		4		5		
299	Gf-Rt2		5			4	5		5			4	5	4	4
300	Hv3	5			4		5	4			4		4		
301	Bg	4	5		4		5		5		4		5		
302	Bs	5			5		5	4			5		5		
303	Bg	4	5		4		5		5		4		5		
304	Crl	4		4			4			4			4		
305	Sk	4	5		4		5		5		4		5		
306	Bg	4	5		4		5		5		4		5		
307	Cr	5					5	4					4		
308	Bg	4	5		4		5		5		4		5		
309	Cr	5					5	4					4		
310	Hy	5			4		5	4			4		4		
311	Sc-Be	4					4								
312	Со	4	5		4		5		5		4		5		
313	Bs	5			5		5	4			5		5		
314	Hy3	4		<u> </u>	4		4				4		4		
315	Co	4	5		4		5		5		4		5		
316	Ky	4	-	-			4		-						
318	Sc-Bo	4					4								
319	Co	4	5		4		5		5		4		5		
320	Bs	5	-		5		5	4	-		5		5		

Appendix 3. Cont...

UMA	Soils	c	W	d	f	e	Macadamia	c	W	d	f	e	Citrus	e	Rye grass
321	K13-Hs	4					4								
323	J12-Hs2	4	5				5		5				5		
324	Ky-Nn					4	4					4	4	4	4
325	Ку	4					4								
326	Ky-Nn					4	4					4	4	4	4
327	Tw3	5	5		5		5	4	5		5		5		
328	Ky-Nn					4	4					4	4	4	4
329	Ку	4					4								
330	Tw3	4	5		5		5		5		5		5		
331	Hy3	5			5		5	4			5		5		
332	Rt2-Dd		5				5		5				5		
333	Hy3	4			4		4				4		4		
335	Ka	4					4								
336	Ka2-Ky	<u> </u>				4	4					4	4	4	4
337	Bs-Bd	5			5		5	4			5		5		
338	Gf	4					4								
339	Bd-Cn	5			5		5	4			5		5		
341	Hs-Jl1		5	4			5		5	4			5		
343	Bs	5			5		5	4			5		5		
345	Cn	4			4		4				4		4		
346	Gf2	4					4								
349	Rt3		5				5		5				5		
350	Gf2-Dd2					4	4					4	4	4	4
351	Ek2-Gf2		5			4	5		5			4	5	4	4
352	Gf2-Rt3	4	5				5		5				5		
353	Cb	5	4		5		5	4	4		5		5		
355	Hp	5			5		5				5		5		
356	Sk	4	5		4		5		5		4		5		
357	Bg-Gy	5	5		4		5	4	5		4		5		
359	Be					4	4					4	4	4	4
360	Dd2					4	4					4	4	4	4
362	Cr	4					4								
363	Sk	4	5		4		5		5		4		5		
365	Ob	4	5				5		5				5		
367	Sk	4	5		4		5		5		4		5		
369	Sk	4	5		4		5		5		4		5		
370	Dd2-Gf3					4	4					4	4	4	4
371	Bs	5			5		5	4			5		5		
375	Pd3-Rt2	<u> </u>	5		-		5		5		-		5		<u> </u>
377	Cb-Sk	5	5		4		5	4	5		4		5		
378	Bd-Cr	5	-		5		5	4	-		5		5		
379	Gr	4			4		4				4		4		
381	Bd	4			5		5				5		5		

Appendix 3. Cont...

UMA	Soils	c	w	d	f	e	Macadamia	c	w	d	f	e	Citrus	e	Rye grass
382	Bs-Bd	5			5		5	4			5		5		
384	Dd2-Be2					4	4					4	4	4	4
385	Bd	4			5		5				5		5		
386	Gy-Sp	5	5		4		5	4	5		4		5		
387	Be2	4					4								
388	Rt2		5				5		5				5		
389	Jn2		5				5		5				5		
390	Jn	4	5		4		5		5		4		5		
391	Jn2		5				5		5				5		
392	Jn	4	5		4		5		5		4		5		
393	Tw	4	5		5		5		5		5		5		
394	Bs	4			5		5				5		5		
395	Rt3	4	5				5		5				5		
396	Gf	4	5				5		5				5		
398	Rt	4	5				5		5				5		
399	Bs-Hp	5			5		5	4			5		5		
400	Tw	4	5		5		5		5		5		5		
401	Bo	4					4								
403	Tw	4	5		5		5		5		5		5		
405	Dd2	4					4								
406	Tw	4	5		5		5		5		5		5		
407	Bs	5			5		5	4			5		5		
409	Во	4					4								
410	Bs-Gr	5			5		5	4			5		5		
412	Rt		5				5		5				5		
413	Co3	5	5		5		5	4	5		5		5		
416	Bd	4			5		5				5		5		
417	Rt2		5			4	5		5			4	5		4
418	Bd	5			5		5	4			5		5		
419	Hy-Cr	5			4		5	4			4		4		
420	Sk1	4	5	4			5		5	4			5		
421	Bo1			4			4			4			4		
422	Dd3-Ek1	4		4			4			4			4		
423	Cn-Sp	5	5		4		5	4	5		4		5		
425	Bs-Cr	5					5	4					4		
426	Sp	4	5		4		5		5		4		5		
427	Cr	4					4								
428	Dd2		5			5	5		5			5	5		5
429	Bd	4			5		5				5		5		
430	Bd	4			5		5				5		5		
431	Dd	4					4								
433	Ky2-Ka2					5	5					5	5	5	5
434	Jl1-Ek2		5	4		5	5		5	4		5	5	5	5

Appendix 3. Cont...

Appendix 4. Suitability of soils in the Kilcoy–Woodford area for selected crops
Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Bd	4	3	2	2	5	5	2
Bd	14	3	2	2	5	5	2
Bd	16	3	3	2	5	5	3
Bd	20	3	3	3	5	5	2
Bd	25	3	2	2	5	5	2
Bd	26	3	3	3	4	4	2
Bd	28	3	3	2	5	5	3
Bd	33	4	4	4	4	3	3
Bd	35	4	4	4	4	3	3
Bd	39	3	3	3	4	4	2
Bd	43	3	3	3	5	5	2
Bd	46	3	3	3	5	5	2
Bd	66	3	3	3	5	5	2
Bd	68	3	3	2	5	5	3
Bd	69	3	2	2	5	5	2
Bd	70	3	2	2	5	5	2
Bd	71	3	2	2	5	5	2
Bd	86	3	2	2	5	5	2
Bd	87	3	2	2	5	5	2
Bd	88	3	3	2	5	5	3
Bd	97	3	2	2	5	5	2
Bd	105	3	2	2	5	5	2
Bd	107	3	2	2	5	5	2
Bd	111	3	3	2	5	5	3
Bd	116	3	2	2	5	5	2
Bd	119	3	2	2	5	5	2
Bd	129	3	2	2	5	5	2
Bd	135	3	2	2	5	5	2
Bd	181	3	2	2	5	5	2
Bd	183	3	2	2	5	5	2
Bd	202	3	3	2	5	5	3
Bd	202	3	2	2	5	5	2
Bd	219	3	2	2	5	5	2
Bd	221	3	2	2	5	5	2
Bd	381	3	2	2	5	5	2
Bd	385	3	2	2	5	5	2
Bd	416	3	2	2	5	5	2
Bd	418	3	3	2	5	5	3
Bd	429	3	2	2	5	5	2
Bd	430	3	2	2	5	5	2
Bd-Bg3	37	4	4	4	5	5	2
Bd-Bs	77	3	3	3	5	5	3
Bd-Cn	339	3	3	3	5	5	3
Bd-Cr	378	4	3	4	5	5	3
Bd-Hn	578	- 1 3	3	3	5	5	3
Bd-Hn	7	3	2	3	5	5	2
Bd-Sp	166	<u> </u>	<u> </u>	<u> </u>	5	5	3
De ph	100	-		- T	5	5	

Appendix 4. Suitability of soils in the Kilcoy-Woodford area for selected crops

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Bd3	264	4	3	2	5	5	3
Be	359	5	5	5	4	4	4
Be2	387	4	4	4	4	3	3
Be3	347	5	5	5	3	3	3
Bg	50	4	4	4	5	5	3
Bg	149	4	4	4	5	5	3
Bg	158	4	4	4	5	5	3
Bg	172	4	4	4	5	5	3
Bg	301	4	4	4	5	5	3
Bg	303	4	4	4	5	5	3
Bg	306	4	4	4	5	5	3
Bg	308	4	4	4	5	5	3
Bg-Gy	357	4	4	4	5	5	3
Bg3	53	4	4	4	5	5	3
Bg3	292	4	4	4	5	5	3
Bo	401	4	4	4	4	3	2
Во	408	5	5	5	3	3	3
Во	409	4	4	4	4	3	2
Bo1	421	5	5	5	4	4	3
Bs	91	3	3	3	5	5	3
Bs	94	3	3	3	5	5	3
Bs	123	3	3	3	5	5	3
Bs	147	3	3	3	5	5	3
Bs	157	3	3	3	5	5	3
Bs	197	3	3	3	5	5	3
Bs	210	3	3	3	5	5	3
Bs	216	3	3	3	5	5	3
Bs	225	3	3	3	5	5	3
Bs	229	3	3	3	5	5	3
Bs	244	3	3	3	5	5	3
Bs	259	3	3	3	5	5	3
Bs	261	3	3	3	5	5	3
Bs	302	3	3	3	5	5	3
Bs	313	3	3	3	5	5	3
Bs	320	3	3	3	5	5	3
Bs	343	3	3	3	5	5	3
Bs	371	3	3	3	5	5	3
Bs	394	3	3	3	5	5	3
Bs	407	3	3	3	5	5	3
Bs-Bd	57	3	3	3	5	5	3
Bs-Bd	169	3	3	3	5	5	3
Bs-Bd	178	3	3	3	5	5	3
Bs-Bd	205	3	3	3	5	5	3
Bs-Bd	238	3	3	3	5	5	3
Bs-Bd	257	3	3	3	5	5	3
Bs-Bd	337	3	3	3	5	5	3
Bs-Bd	382	3	3	3	5	5	3
Bs-Cb	137	3	3	3	5	5	3

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Bs-Cb	162	3	3	3	5	5	3
Bs-Cb	214	3	3	3	5	5	3
Bs-Cn	248	3	3	3	4	4	3
Bs-Cr	425	4	3	4	5	4	3
Bs-Gr	410	3	3	3	5	5	3
Bs-Hp	185	3	3	3	5	5	3
Bs-Hp	240	3	3	3	5	5	3
Bs-Hp	399	3	3	3	5	5	3
Bs-Sp	243	4	4	4	5	5	3
Bu	182	4	4	4	4	3	3
Bu3	188	5	5	5	4	4	4
Cb	17	3	3	3	5	5	3
Cb	213	3	3	3	5	5	3
Cb	353	3	3	3	5	5	3
Cb-Sk	377	4	4	4	5	5	3
Cn	2	3	3	3	5	4	3
Cn	76	3	3	3	5	4	3
Cn	96	3	3	3	4	4	3
Cn	153	3	3	3	4	4	3
Cn	253	3	3	3	5	4	3
Cn	273	3	3	3	4	4	3
Cn	345	3	3	3	4	4	3
Cn2-Bg3	298	4	4	4	5	5	3
Cn-Cb	226	3	3	3	5	5	3
Cn-Hp2	268	3	3	3	5	4	3
Cn-Sp	423	4	4	4	5	5	3
Co	312	4	4	4	5	5	2
Со	315	4	4	4	5	5	2
Со	319	4	4	4	5	5	2
Co3	413	4	4	4	5	5	3
Cr	11	4	3	4	4	3	3
Cr	13	4	3	4	5	4	3
Cr	51	4	3	4	5	4	3
Cr	56	4	3	4	4	3	3
Cr	278	4	3	4	5	4	3
Cr	307	4	3	4	5	4	3
Cr	309	4	3	4	5	4	3
Cr	362	4	3	4	4	3	3
Cr	427	4	3	4	4	3	3
Cr-Bd	6	4	3	4	5	5	3
Cr-Hp	280	4	5	5	4	4	3
Cr-Ot	138	4	4	4	5	5	3
Cr1	304	4	4	4	4	4	3
Cr3	279	4	3	4	4	3	3
Dd	1	4	4	4	4	3	3
Dd	3	5	5	5	4	4	4
Dd	8	5	5	5	4	4	4
Dd	9	5	5	5	3	3	3

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Dd	15	5	5	5	3	3	3
Dd	18	5	5	5	3	3	3
Dd	19	5	5	5	5	5	5
Dd	22	5	5	5	3	3	3
Dd	23	5	5	5	5	5	5
Dd	24	4	4	4	4	3	3
Dd	30	4	4	4	4	3	3
Dd	31	5	5	5	4	4	4
Dd	36	5	5	5	4	4	4
Dd	38	5	5	5	3	3	3
Dd	40	4	4	4	4	3	3
Dd	44	4	4	4	4	3	3
Dd	45	5	5	5	4	4	4
Dd	61	4	4	4	4	3	3
Dd	72	5	5	5	5	5	5
Dd	78	5	5	5	4	4	4
Dd	106	5	5	5	4	4	4
Dd	114	5	5	5	4	4	4
Dd	115	5	5	5	3	3	3
Dd	117	5	5	5	3	3	3
Dd	118	5	5	5	4	4	4
Dd	121	5	5	5	4	4	4
Dd	269	5	5	5	3	3	3
Dd	270	4	4	4	4	3	3
Dd	274	4	4	4	4	3	3
Dd	281	5	5	5	3	3	3
Dd	283	4	4	4	4	3	3
Dd	288	4	4	4	4	3	3
Dd	380	5	5	5	3	3	3
Dd	424	5	5	5	3	3	3
Dd	431	4	4	4	4	3	3
Dd2-Be2	384	5	5	5	4	4	4
Dd2-Gf2	59	5	5	5	5	5	5
Dd2-Gf3	370	5	5	5	4	4	4
Dd3	277	5	5	5	3	3	3
Dd3-Ek1	422	4	4	4	4	4	3
Dd-Gf	65	5	5	5	4	4	4
Dd-Gf	67	5	5	5	3	3	3
Dd-Gf	58	5	5	5	3	3	3
Dd-Gf	62	4	4	4	4	3	3
Dd-Gf	63	5	5	5	3	3	3
Dd-Gf	64	5	5	5	4	4	4
Dd-Gf	373	5	5	5	3	3	3
Dd-Rt3	84	5	5	5	5	5	4
Dd-Sc	271	5	5	5	4	4	4
Dd1	122	5	5	5	5	5	5
Dd2	32	5	5	5	5	5	5
Dd2	101	5	5	5	3	3	3

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Dd2	282	5	5	5	5	5	5
Dd2	286	5	5	5	4	4	4
Dd2	287	5	5	5	3	3	3
Dd2	291	5	5	5	3	3	3
Dd2	354	5	5	5	3	3	3
Dd2	360	5	5	5	4	4	4
Dd2	405	4	4	4	4	3	3
Dd2	415	5	5	5	3	3	3
Dd2	428	5	5	5	5	5	5
Dd3	75	5	5	5	4	4	4
Dd3	98	5	5	5	4	4	4
Dd3	103	5	5	5	4	4	4
Dd3	256	5	5	5	4	4	4
Dd3	262	5	5	5	3	3	3
Dd3	272	5	5	5	4	4	4
Dd3	275	5	5	5	4	4	4
Dr	223	3	3	4	4	3	2
Dr	233	4	4	5	3	3	2
Dr	252	3	3	4	4	3	2
Dr1	215	4	4	4	4	4	3
Dr2	230	5	5	5	4	4	4
Dr2	237	5	5	5	3	3	3
Dr2-Jn3	218	5	5	5	3	3	3
Dr3	217	4	4	4	3	3	2
Dr3	224	5	5	5	3	3	3
Dr3	414	4	4	5	3	3	2
Dr3-Dw2	227	5	5	5	5	5	5
Dw	235	4	4	5	4	3	3
Dw	246	4	4	5	4	3	3
Dw	247	5	5	5	5	5	5
Dw2	228	4	3	4	4	3	3
Dw2	234	5	5	5	5	5	5
Ek2-Gf2	285	4	4	5	5	5	3
Ek2-Gf2	351	5	5	5	5	5	4
Gf	79	5	5	5	3	3	3
Gf	265	4	4	4	4	3	3
Gf	338	4	4	4	4	3	3
Gf	364	5	5	5	3	3	3
Gf	396	4	4	4	5	5	3
Gf-Rt2	299	5	5	5	5	5	4
Gf2	34	4	4	4	4	3	3
Gf2	52	5	5	5	3	3	3
Gf2	290	4	4	4	4	3	3
Gf2	344	5	5	5	3	3	3
Gf2	346	4	4	4	4	3	3
Gf2	361	5	5	5	3	3	3
Gf2	366	5	5	5	3	3	3
Gf2-Dd2	41	5	5	5	5	5	5

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Gf2-Dd2	350	5	5	5	4	4	4
Gf2-Dd3	376	5	5	5	3	3	3
Gf2-Rt3	352	4	4	4	5	5	3
Gf3	99	4	4	4	4	3	3
Gf3	102	5	5	5	3	3	3
Gf3	113	5	5	5	3	3	3
Gf3	293	5	5	5	3	3	3
Gf3-Dd2	368	5	5	5	3	3	3
Gf3-Dd3	112	5	5	5	4	4	4
Gl	180	2	3	2	5	4	3
Gr	47	3	3	3	4	4	2
Gr	170	3	3	3	5	4	3
Gr	379	3	3	3	4	4	2
Gr-Hp	154	3	3	3	5	5	3
Gy	193	3	3	3	5	4	3
Gy-Cn	284	4	4	4	5	5	3
Gy-Sp	386	4	4	4	5	5	3
Hp	29	3	3	2	5	5	3
Hp	49	3	3	3	5	5	2
Hp	55	3	3	2	5	5	3
Hp	60	3	3	2	5	5	3
Hp	120	3	3	2	5	5	3
Hp	189	3	3	2	5	5	3
Hp	192	3	2	2	5	5	2
Hp	204	3	2	2	5	5	2
Hp	263	3	2	2	5	5	2
Hp	355	3	3	2	5	5	3
Hp2-Sp	187	4	4	4	5	5	3
Hp-Bd	296	2	3	3	5	4	3
Hp-Bg	232	4	4	4	5	5	3
Hp-Cr	276	4	3	4	4	4	3
Hs-Jl1	341	5	5	5	5	5	3
Hv	81	3	2	3	4	4	2
Hy	310	3	3	2	5	4	3
Hy-Cr	80	4	3	4	5	4	3
Hv-Cr	419	4	3	4	5	4	3
Hv-Hv1	289	4	4	4	4	4	3
Hv1	200	4	4	4	4	4	3
Hv2	199	3	3	3	4	4	2
Hy3	300	4	3	2	5	4	3
Hv3	314	4	2	3	4	4	2
Hv3	331	4	3	2	5	5	3
Hv3	333	4	2	2	4	4	2
JII-Ek2	434	5	5	5	5	5	5
Jl2-Hs2	323	4	4	5	5	5	2
Jn	251	4	4	4	5	5	3
Jn	390	4	4	4	5	5	3
Jn	392	4	4	4	5	5	3

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Jn-Dr	250	4	4	4	5	5	3
Jn2	389	4	4	5	5	5	3
Jn2	391	4	4	5	5	5	3
Jn3	231	4	4	4	5	5	3
Ка	335	4	4	4	4	3	3
Ka2	155	4	4	4	4	3	3
Ka2	160	5	5	5	3	3	3
Ka2	334	5	5	5	3	3	3
Ka2-Ky	336	5	5	5	4	4	4
Ka2-Ky1	156	5	5	5	4	4	3
Ka3	196	4	4	4	4	3	3
Ka3-Nn1	206	5	5	5	4	4	4
K1	90	3	3	4	4	3	3
K1	92	3	3	4	4	3	3
K1	95	3	3	4	4	3	3
K1-Hs	255	5	5	5	4	4	4
K11	134	4	4	4	4	4	3
K11	208	5	5	5	4	4	3
K12	93	4	4	5	3	3	3
K12	239	4	4	5	3	3	2
K12	260	4	3	4	4	3	2
K13-Hs	321	4	4	4	4	3	3
Ку	82	5	5	5	3	3	3
Ку	89	5	5	5	3	3	3
Ку	126	5	5	5	3	3	3
Ку	145	4	4	4	4	3	2
Ку	148	5	5	5	3	3	3
Ку	150	4	4	4	4	3	2
Ку	151	4	4	4	4	3	2
Ку	152	5	5	5	3	3	3
Ку	173	4	4	4	2	2	2
Ку	179	4	4	4	4	3	2
Ку	186	4	4	4	4	3	2
Ку	203	4	4	4	4	3	2
Ку	316	4	4	4	4	3	2
Ку	317	5	5	5	3	3	3
Ку	325	4	4	4	4	3	2
Ку	329	4	4	4	4	3	2
Ky2-Ka2	433	5	5	5	5	5	5
Ky2-Kl2	163	5	5	5	3	3	3
Ky2-Kl2	174	5	5	5	4	4	4
Ку3-Ка3	164	5	5	5	3	3	3
Ky3-Kl3	167	5	5	5	3	3	3
Ky-Ka2	176	5	5	5	3	3	3
Ky-Ka3	190	5	5	5	3	3	3
Ky-Kl	127	5	5	5	4	4	4
Ky-Kl	128	4	4	4	4	3	3
Ky-Kl	132	5	5	5	4	4	4

Appendix 4. Cont...

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Ky-Kl	136	4	4	4	4	3	3
Ky-Kl	139	4	4	4	4	3	3
Ky-Kl	140	5	5	5	4	4	4
Ky-Kl	144	5	5	5	3	3	3
Ky-Kl	175	5	5	5	3	3	3
Ky-Kl	177	5	5	5	3	3	3
Ky-Kl	220	5	5	5	4	4	4
Ky-Kl	242	5	5	5	3	3	3
Ky-Kl2	258	4	4	4	4	3	3
Ky-K13	143	5	5	5	4	4	4
Ky-Nn	324	5	5	5	4	4	4
Ky-Nn	326	5	5	5	4	4	4
Ky-Nn	328	5	5	5	4	4	4
Ky1	159	4	4	4	4	4	3
Ky1	198	5	5	5	4	4	4
Ky2	184	5	5	5	5	5	5
Ky3	171	4	4	4	4	3	2
Nn	146	4	4	4	4	3	2
Nn	201	4	4	4	4	3	2
Ob	365	4	4	4	5	5	3
Ot	168	4	4	4	5	5	2
Ot	297	4	4	4	5	5	3
Ot-Bg	294	4	4	4	5	5	3
Ot3	254	4	4	4	5	5	2
Pd3-Dw	245	5	5	5	4	4	4
Pd3-Rt2	375	5	5	5	5	5	3
Rt	124	4	4	4	5	5	2
Rt	398	4	4	4	5	5	2
Rt	412	4	4	4	5	5	2
Rt-Gf	85	4	4	4	5	5	3
Rt-Gf	108	4	4	4	5	5	3
Rt-Gf	109	5	5	5	5	5	3
Rt-Sc	131	4	4	4	5	5	2
Rt2	212	5	5	5	5	5	3
Rt2	388	5	5	5	5	5	3
Rt2	417	5	5	5	5	5	4
Rt2-Dd	332	4	4	4	5	5	3
Rt3	83	4	4	4	5	5	2
Rt3	110	4	4	4	5	5	2
Rt3	236	4	4	4	5	5	2
Rt3	349	5	5	5	5	5	3
Rt3	395	4	4	4	5	5	2
Sc	12	5	5	5	4	4	4
Sc	266	4	5	5	4	4	2
Sc	267	5	5	5	3	3	3
Sc	295	3	3	4	4	3	2
Sc-Be	311	4	4	4	4	3	3
Sc-Bo	318	4	4	4	4	3	2

Soils	UMA	sorghum, maize	crucifers	potatoes	macadamia	citrus	rye grass
Sc-Bo3	402	5	5	5	3	3	3
Sk	10	4	4	4	5	5	3
Sk	21	4	4	4	5	5	3
Sk	100	4	4	4	5	5	3
Sk	305	4	4	4	5	5	3
Sk	356	4	4	4	5	5	3
Sk	363	4	4	4	5	5	3
Sk	367	4	4	4	5	5	3
Sk	369	4	4	4	5	5	3
Sk-Bg3	73	4	4	4	5	5	3
Sk1	420	4	4	4	5	5	3
Sp	191	4	4	4	5	5	3
Sp	194	4	4	4	5	5	3
Sp	195	4	4	4	5	5	3
Sp	207	4	4	4	5	5	3
Sp	426	4	4	4	5	5	3
Tw	393	4	4	4	5	5	2
Tw	400	4	4	4	5	5	2
Tw	403	4	4	4	5	5	2
Tw	406	4	4	4	5	5	2
Tw3	327	4	4	4	5	5	3
Tw3	330	4	4	4	5	5	2
Wn	54	5	5	5	3	3	3
Wn	74	5	5	5	5	5	5
Wn2	48	5	5	5	4	4	4
Wn3-Dd	27	5	5	5	3	3	3
Mo2-Dg1	249	4	4	4	4	4	3

Appendix 4. Cont...

Appendix 5. Heatwaves and frosts

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		Γ	No. of d	lays ma	aximun	1 screen	tempe	erature	es >38°C			
1970												
1971										1	1	
1972												2
1973												
1974												
1975												
1976												
1977											1	1
1978	1											
1979												5
1980	1		1									
1981												1
1982	1											
1983												
1984												
1985												
1986												
1987	1											
1988										1		
1989												
1990	1											
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Year	Jan	Feb	Mar No. of	Apr days m	May	Jun n screei	Jul 1 temp	Aug eratur	Sep es <2°C	Oct	Nov	Dec
Year 1970	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screei	Jul n temp 3	Aug eratur	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screei	Jul 1 temp 3 1	Aug eratur	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screen	Jul 1 tempo 3 1 2	Aug eratur	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screen	Jul a tempo 3 1 2	Aug	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screer 1	Jul 1 tempo 3 1 2 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screen 1 1	Jul a tempo 3 1 2 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screei 1 1 1	Jul a tempo 3 1 2 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977	Jan	Feb	Mar No. of	Apr days m	May	Jun n screen	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screet	Jul a tempo 3 1 2 1 1	Aug erature 1 1	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	Jan	Feb	Mar No. of	Apr days m	May ninimur	Jun n screei 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	Jan	Feb	Mar No. of	Apr days m	May	Jun n screet 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981	Jan	Feb	Mar No. of	Apr days m		Jun n screet 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982	Jan	Feb	Mar No. of	Apr days m	May	Jun n screei 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983	Jan	Feb	Mar No. of	Apr days m		Jun n screei 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984	Jan	Feb	Mar No. of	Apr days m	May	Jun n screet 1 1 1 1	Jul 3 1 2 1 1 1 1 1 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985	Jan	Feb	Mar No. of	Apr days m	May	Jun n screet 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul a tempo 3 1 2 1 1 - - - - - - - - - - - - -	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986	Jan	Feb	Mar No. of	Apr days m	May	Jun n screei 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul a tempo 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1983 1984 1985 1986 1987	Jan	Feb	Mar No. of	Apr days m	May	Jun n screei 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1977 1978 1979 1980 1981 1982 1983 1984 1985 1985 1986 1987 1988	Jan	Feb	Mar No. of	Apr days m	May	Jun n screet 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec
Year 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	Jan	Feb	Mar No. of	Apr days m	May	Jun n screei 1 1 1 1 1 1 1 1 1 1 1 1 1	Jul a tempo 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	Aug erature	Sep es <2°C	Oct	Nov	Dec

Appendix 5. Heatwaves and frosts

 $Heatwaves (screen temperatures > 38^{\circ}C) and frosts (screen temperatures < 2^{\circ}C) recorded at Kirkleagh (27^{\circ} 2' south, 152^{\circ} 34' east)$

* Isbell, 1996